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1. Introduction 

Software development is one of the most complex and high-risk endeavors that 
any business can attempt. The rates of change in the marketplace and 
technology that confronts most software projects is enormous.  To overcome 
these challenges, decision makers must make use of a combination of business, 
project management, marketing, and technical skills that no other industry in 
human history has ever required. 

Each of these four skill sets has a different focus and each has developed its 
own unique language to communicate its particular point of view.  Finance 
types speak of revenues, costs, expenses, investments, and profits.  Project 
managers are more interested in schedules and the best use of scarce 
resources.  Those focused on marketing are more interested in market 
conditions, product appeal, product niches, salability, feature sets, competition, 
and customer reactions.  Engineering managers are quite content to leave these 
issues to those in the “front offices,” instead preferring to focus on the 
technical challenges of developing a product with a rich, cutting edge feature 
set and having fun doing it.  It is rare to find leaders who speak more than one 
of these languages fluently. This difficulty in communicating between these 
fundamental business disciplines pervades technology development, but seems 
to hit software development particularly hard. 

This nexus of communication, while a major source of both critical product 
defects and product development opportunities, is almost completely neglected 
by the processes favored by each individual discipline. There is only one branch 
of software development whose primary focus is this very nexus – Software 
Quality Control. Remarkably, what may be the most profitable aspect of 
software development is often the most neglected. 

No one wants to overspend on product development.  But the costs of releasing 
defect-laden software are significantly greater than most people assume.  Many 
development managers intuitively “know” this to be true, but relying solely on 
intuition is a costly mistake – as will be illustrated by several real-world 
examples in Section 3.  The good news is that there is a goldmine of data right 
at our fingertips that will guide us to the most profitable level of attention to 
software quality.  All we need to do is use it.  

There are three primary opportunities for quality improvement in a 
development organization: 

� Defect Prevention – preventing defects from reaching system test. 
� Defect Discovery – Finding and documenting defects before they 

are released to customers. 
� Defect Correction – Correcting defects that are discovered and 

reported. 
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There is an optimal attention to – and expenditure on – each of these areas.  
Since we are discussing product development in the context of a business, 
when we say optimal, we mean most profitable, of course.  Let’s examine the 
income and expense contributors to this optimal point… 

2. Optimal Quality is Optimal Profit 

Intuitively, it is not hard to imagine a case where a development organization is 
so indifferent to quality that its product is entirely unusable.  On the other end 
of the spectrum, we can imagine an organization that consists only of test 
engineers and process supervisors, but with no product actually being 
produced.  Given the conceptual existence of these extremes and given the fact 
that technology products do get produced, sold, and used in the real world, we 
may conclude that somewhere between these two extremes must lay a realm 
where profitable development takes place. 

2.1. Why Aren’t We All Optimal? 

Given that level 5 of the SEI’s Capability Maturity Model is entitled 
“Optimizing,” there is probably a broad consensus that software development 
can be optimized in some sense.  This topic has been studied, discussed, and 
preached in a variety of forums and from a variety of angles for many long 
years.  And yet the SEI still estimates that the bulk of software shops are CMMI 
level 1 or 2.  None of the organizations with which the author has any level of 
experience ever actually behaved in a manner suggesting any awareness of 
the benefits of self-examination and optimization.  Nor have any been at a 
CMM or CMMI level greater than 2. 

So we are left with a puzzle of sorts.  Do the research and writings lack 
credibility?  Does the typical software engineering or product development 
manager simply not know about these options?  Is it merely a perception 
problem?  It may be a combination of many factors, but consider the following 
possibility:  the unintentional academic emphasis on process rather than on 
common sense behaviors has caused many, if not most, development 
managers to throw their hands up in resigned despair before the battle has 
even begun.  They reason (or simply feel) that they do not have the bandwidth 
or the energy required to cause their teams to adhere to the onerous 
processes that they believe are required for achieving or even approaching 
optimal quality levels with their scarce resources, and they never give the 
matter another thought.  In a very real sense, then, the perfect has unwittingly 
become an enemy of the good. 

It is the assertion of this author that any manager of any technology 
product development effort can, with a few straightforward steps, make 
significant progress toward optimizing his or her emphasis on product 
quality, thereby substantially improving the profitability of his/her 
product. 
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2.2. Defining Quality 

Although this is admittedly a relatively narrow definition, for the purposes of 
this analysis, we shall define quality as: 

Quality – a measure of the extent to which the product meets its 
defining requirements without defects. 

This definition allows us to propose the following hypothetical quality 
boundaries: 

Perfect  - The product meets or exceeds all defining requirements and 
has zero defects.  Quality measure is 100% 

Perfectly Useless  - There is no correlation at all between the product’s 
functionality (if any) and its defining requirements.  Quality measure 
is 0%. 

2.3. The Costs of High Quality 

With these definitions in mind, consider the chart of quality level achieved 
versus amount of effort (i.e., money) spent on quality in Figure 1. 
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Figure 1.  Improvement in quality with increasing expenditures on quality 

Figure 1 Illustrates what our experience tells us:  that it is relatively 
inexpensive to make significant gains in quality when first addressing the 
problem.  But as the quality level approaches perfection, remaining defects 
are more elusive and more costly to find – so we can never quite achieve 
perfection, regardless of what we spend trying.  Since we are looking for the 
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costs of high quality, let’s swap the axes on Figure 1.  This gives us Figure 2, 
illustrating the costs of high quality. 
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Figure 2.  Cost of Quality Improvement vs. Quality 

2.4. Costs of Poor Quality 

Some examples of the costs of poor quality in a released product include: 

� Increased field and call center support costs. 
� Increased cost of producing and distributing larger numbers of bug 

fix releases (potentially creating significant waste of previously 
manufactured product). 

� Increased certification and approval costs in regulated industries. 
� Increased liability exposure and increased liability insurance costs 

(e.g., in industries such as medical devices, financial transactions, 
etc.) 

But defects are not only costly in released software.  Pre-release defects can 
add costs such as: 

� Increased test time per cycle and increased number of test cycles 
before desired quality level is achieved (added costs of testing 
defective software). 

� Increased time to market because of additional testing and 
debugging resulting in lost revenue. 

� Increased cost of correcting defects. 
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� Lost opportunity costs resulting from tying up development and test 
resources on maintenance instead of applying them to new features 
or new products. 

Any company can (and all companies should) know exactly how much they are 
spending on support for any given product.  Now consider the relationship of 
support costs to the quality of the product as proposed in Figure 3. 
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Figure 3.  Support Costs per Unit vs. Product Quality 

Again, this curve is quite intuitive.  As quality of the product increases toward 
perfection, the costs of post-sales support decrease asymptotically toward 
some theoretical minimum.1 

2.5. Total Costs vs. Quality 

Now that we have the curves in Figures 2 and 3 plotted against the same 
independent variable, we can include both curves on the same chart, and have 
done so in Figure 4.  Suddenly these curves look very familiar.  In fact, they 
are very like the supply and demand curves that we all remember from 
Economics 101.  And it starts to become obvious that there will be a point at 
which costs are minimized. 

                                       
1 The theoretical minimum support costs are those that would be necessary to support a perfect 
product for imperfect customers.  So support costs can never reach zero. 



 

6 

 

(100 – x)% 100%
Software Quality

A
v
e
ra
g
e
 S
u
p
p
o
rt
 C
o
s
t 
p
e
r 
C
u
s
to
m
e
r

C
o
s
ts
 o
f 
A
c
h
ie
v
in
g
 Q
u
a
li
ty

(100 – x)% 100%
Software Quality

A
v
e
ra
g
e
 S
u
p
p
o
rt
 C
o
s
t 
p
e
r 
C
u
s
to
m
e
r

C
o
s
ts
 o
f 
A
c
h
ie
v
in
g
 Q
u
a
li
ty

 

Figure 4.  Costs Affected by Product Quality 

Since costs of achieving quality and costs of support are both real costs that are 
additive, we can add them to produce the curve shown in Figure 5.  This curve 
makes it quite clear a minimum cost point really does exist. 
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Figure 5.  Total Costs versus Quality 
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2.6. Impact of Quality on Revenue2 

Some examples of the impact of poor quality on revenue include: 

� Lost sales and increased costs of sales 

� Slower customer rollouts & slower purchase schedules 
� Decreased follow-on business and/or lost customers 
� Damaged reputation preventing some new sales 
� Sales staff spends additional time with unhappy customers 

that cannot be spent on new sales. 

� Increased customer cost of ownership, resulting in a decrease in 
what customers are willing or able to pay for the product. 

These reductions in revenue resulting from poor quality are devilishly difficult 
to measure directly, but we can get a very good sense of them by looking at 
support costs.  It is probably a very safe bet that as support costs due to poor 
quality increase, revenue will decrease accordingly. 

According to Technical Assistance Research Programs (TARP)  [Goodman, 
1999], for every customer who takes the time to complain about a bad 
experience with a consumer product or service, somewhere between 1 and 19 
more customers felt the same way but did not complain.  Each of these 2 to 
20 customers represented by that single support call will tell from 5 to 16 
other people about their negative experience.  This means that for every 
complaint you hear, somewhere between 10 and 320 people have a negative 
impression of your product or service.  Of those who did not complain, 
somewhere between 63% and 91% will never do business with your company 
again. 

For a business-to-business product or service, the complaint rates are higher – 
75% of unhappy customers will complain.  On the downside, how many of our 
potential new clients will they tell?  For big-ticket items where proposals are 
required and references are thoroughly checked, it is a safe bet that they tell 
all of them! 

It is perfectly reasonable to assume that the negative impact on revenue 
resulting from low quality is proportional to the corresponding increase in 
support costs.  So for a given fixed release date we can illustrate the impact of 

quality on potential revenue as in Figure 6 (if increasing the quality pushes 
out the release date, then the curve would peak at a quality level lower than 
100%). 

                                       
2 This section does not discuss the impact of delay of product shipment on revenue that might 
result from a long test-debug cycle.  For interested readers, this is treated briefly in the 
Appendix. 
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Figure 6.  Total Potential Revenue vs. Quality 

We can now subtract our expenses (Figure 5) from our revenue (Figure 6) and 
arrive at a curve relating potential profit to software quality as shown in 
Figure 7.  This curve clearly illustrates how an optimal quality level can 
maximize our profit.  So now we know not only that this point exists, but why 
it exists. 
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Figure 7.  Potential Profit vs. Quality 
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If we pay too little attention to quality, our revenue will be reduced and, even 
if we might otherwise make a profit, it will be eaten up by support costs.  If we 
spend too much on quality, the marginal increases in revenue will never cover 
the additional costs. 

We will probably never precisely optimize our attention to quality, but most of 
us would be thrilled to get 90% of the way there.  As Figure 7 illustrates, we 
can do so with considerable latitude. 

3. The Costs of Failing to Optimize 

In the preceding section, we briefly addressed the very real costs of failing to 
address quality optimization.  The best way to demonstrate the error of relying 
on intuition or guesswork in defect reduction activities is to demonstrate with 
real-life examples of how wrong a project can go. 

3.1. Failing at Defect Prevention 

This is probably the most often overlooked area of potential quality 
improvement.  Even the best organizations fail in some way here.  The 
unfortunate thing is that the many of the kinds of bugs that escape this step 
can be the most devastating to a project. 

In one example organization, the developers were quite competent.  The 
product was a communications product requiring that many devices be 
distributed to remote locations.  The product used cutting edge technology 
and was extremely complex.  Designs were often written and reviewed, but 
code reviews were rare.  And as is the case with many development 
organizations, there was no definition of a “unit test,” so if any unit testing 
was done, it was entirely at the individual developer’s discretion. 

So defects slipped past development – and some of them slipped past system 
test into the hands of several customers.  And time went by.  Eventually, after 
enough customers called angrily saying that their devices had either 
mysteriously rebooted or had locked up and stopped serving their customers, 
the troops were rallied.  This bug had to be found and eliminated! 

At first, most of the engineering and field support departments were deployed 
against this bug.  But the bug simply evaded everyone.  The thing was, it was 
the kind of bug that does not cause any ill effects at all in the domain of its 
own code.  It was the type of bug that we all know and loathe – the dreaded 
memory time bomb.  The process in which the bug resided ran beautifully well 
until some rare conditions arose that caused it to write to memory other than 
its own. This failure had no immediate consequences, but once it happened, 
doom was inevitable. 

So two key developers were told to stay on the trail of this bug until it was 
found.  Code reviews were organized.  Code was written to try to detect the 
corruption as early as possible.  Still more code was written to correct the 
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error when it did occur.  Many a hair turned gray or was pulled out.  But 12 
weeks and several hundred man-hours later, although the code reviews had 
unearthed several areas for significant improvement, the actual smoking gun 
was never found. 

The truth is that it is impossible to know whether or not this bug would have 
been prevented if better unit testing and/or code reviews had been done.  But 
we certainly know what not finding it ultimately cost.  Not only did the 
product suffer a damaged reputation with many customers (who talk among 
themselves frequently) but many hours of developer time were spent and the 
bug was never found after the fact. 

3.2. Failing at Defect Detection 

Another case involves an innovative and complex new communications 
product, finally getting a handful of customers after a considerable period of 
development.  Prior to release and the first few customer installations, there 
had been no testing program at all, so all defects that got past the developers 
were found in the field.  Field engineers came from R&D staff, ostensibly 
because of the complexity of the product. 

After only 4 customer installations, problem reports from the field were 
consuming 100% of the time of the R&D staff (about 14 engineers).  Multiple 
new bug fix builds were being released to the field per day, likely with new 
bugs being introduced at nearly their rate of correction – there was no way to 
know.  No new features were being developed and no additional customers 
could be supported at this staffing level.  R&D engineering had completely 
lost credibility with sales, program management, and customers.  The R&D 
staff was exhausted from working 12 to 15 hour days, often 7 days per week. 

On the advice of a consultant hired by the Division President, the R&D team 
added one test engineer, two field support engineers, and one change 
management (CM) specialist.  The CM specialist began by putting a defect 
tracking tool in place and the test engineer began filling its database.  The 
R&D manager decided to halt all new development and spent 8 weeks doing a 
release containing nothing except bug fixes.  For this release, the team 
literally fixed every known bug, no matter how small.  Except in the rarest of 
circumstances involving bugs that were otherwise not reproducible, only the 
field engineers were called upon to travel to customer sites. 

After these changes and the bug-fix release, as if by magic, the chaos 
subsided and, over time, credibility was restored. 

This team had never intentionally released a defect to the field.  But they had 
no independent assessment of the quality of their product other than their 
customers.  Once they knew about their defects and made the decision to 
correct them, sanity was restored. 
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3.3. Failing at Defect Correction 

This entire account was paraphrased from Kaner, et. al. [2002]. 

At one company, the management was very educated and aware of quality 
issues.  They had taken most of the recommended actions to prevent defects 
and to find them.  But because of the pressures of management and the 
marketplace, they always deferred the minor defects – i.e., those that did not 
really reduce the functionality of the product, but which caused it to do 
unexpected things or were just plain annoying. 

At one point in time, once the product had been released for quite a while, the 
change control board decided to review the technical support call log.  To 
their great surprise, an analysis of these calls indicated that over half of the 
technical support call hours had been spent on those many known, trivial 
bugs that they had consciously decided not to fix.  They postulated that they 
could cut their support costs in half by fixing these bugs. 

To test this hypothesis, they halted all new feature development and spent the 
necessary time to fix all of the trivial bugs for which calls had been received.  
They were surprised at how little time this actually took. 

Once this bug fix version of the software was released, true to their 
prediction, customer support costs fell by half. 

3.4. Failing All of the Above 

Although it seems impossible to believe, there are companies who introduce 
very innovative products that fill a critical market niche, but who fail to truly 
address quality at any level. One such very small startup was in its fourth year 
of business and had even reached cash flow positive status. And yet, there 
was no independent test department, no review of tech support calls, no post 
mortems, etc. 

It was not that the CEO was indifferent to quality.  In fact, when the 
suggestion was made to him at one point that he needed to establish a testing 
program, his response was “what do you mean there are bugs in our 
software?!!!”  He was serious.  He thought that every effort was already being 
made to assure not just quality software, but perfect software.  And yet he 
had never heard of independent testing, even from his technical managers, 
who should have known better. 

At that time, about 80% of the company’s staff was technical (i.e., 
engineering, IT, and tech support).  Somewhere over 80% of that technical 
staff’s time was spent handling emergency tech support calls, up to and 
including the time of the CTO and VP-level managers.  Many of these calls 
were coming though the CEO’s office.  Since the technical staff were already 
more expensive per person than average, this meant that well over 2/3 of the 
company’s entire salary budget was being spent on customer support!!  As a 
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result, this technical staff worked long hours, suffered terribly from burnout, 
and the turnover rate was more than 50% per year even though the company 
was paying well above market average salaries. 

Eventually this situation was turned around.  The company still exists and is 
profitable and growing.  But the transition was painful, involved a lot more 
turnover, and a slow process of education of the executive management.  It 
could just as easily have turned out very badly for everyone involved – and 
does for countless such startups every year. 

3.5. Incredible, but True 

Even as I wrote the preceding section, I found the stories incredible.  Had I not 
personally witnessed them or heard them from very reliable sources, I might 
not believe them.  Even with the vast amount of information on how to 
prevent such disasters, these stories are the rule rather than the exception – 
at least in the commercial world. 

Each of the product managers had believed they knew when “enough” defect 
correction had been completed.  The truth, however, is that they were 
shooting from the hip rather than taking the time to look at their situations 
objectively.  In each case, significant resources were expended after the fact 
to correct issues that should have been addressed prior to release. 

I really wanted to include a case study that demonstrated an overemphasis on 
quality, but I was unable to find a good clear-cut example.  Of course, we have 
all heard of huge programs (my experience is with DoD) that are eventually 
cancelled after years of missed deadlines and/or missed quality goals.  But 
there seems to be nearly universal agreement in the literature (and I agree, by 
the way) that these cases were not so much due to overemphasis on quality as 
they were on poor choice of development model, poor execution, poor 
definition of the end goal, etc.  My few experiences with cancelled products in 
the commercial world have been clear failures of marketing, not of 
development (i.e., there was never sufficient market for the product in the 
first place and this was known only after it was introduced). 

Maybe this point is instructive.  In his book entitled “Beyond Fear,” [Schneier, 
2003] Bruce Schneier reminds us of the disparity between our gut feeling for 
the frequency of scary events and their actual odds of occurring.  He points 
out that 40,000 Americans die in auto accidents every year and that to 
produce this many deaths from air travel, the equivalent of one 727 would 
have to crash every 36 hours.  Yet Americans universally take driving for 
granted while most of us are at least somewhat unnerved by air travel and 
many refuse to fly for any reason.  We should consider the very real possibility 
that our fears of losing revenue by delaying the release of a product and of 
“wasting” precious resources on improving quality are an example of this 
imperfect feel for real world statistics.  We have very little visibility into the 
actual monetary effects of market timing, but we know that missing it badly 
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would be catastrophic, so our fears may drive us to vastly overestimate its 
importance relative to quality.  The importance of avoiding this trap (and 
many others) is discussed at length in Hammond [2002].  The prescription for 
avoiding it is to recognize that you may fall prone to it and to gather as much 
objective data as possible. 

Given the overwhelming evidence in favor of a small amount of proactive 
attention costing considerably less time, money, and resources than was paid 
as a consequence of doing nothing, such situations are simply inexcusable. 
Yet many organizations repeat mistakes like these on a daily basis. 

4. Opportunities for Quality Improvement 

In Section 1, we introduced our 3 primary areas of opportunity for quality 
improvement: Prevention, Detection, and Correction.  Now let’s consider these 
3 areas of opportunity separately and look at some factors that affect how 
successful we can be at each of them. 

4.1. Opportunities to Prevent Defects 

Table 1 lists 21 rows of factors that have a direct impact on the 
creation/prevention of defects by a development staff.  This table also 
includes 7 columns that identify key influences on these 21 factors.  The 
items in these 7 columns may be thought of as “control points” through which 
the needed adjustment of the 21 defect prevention factors may be 
accomplished.  It would be tidy indeed if the 21 factors could be neatly 
divided into 7 groups, each identified by one of these key control points, but 
the truth is that most of them are affected by several control points and all 
but 3 are impacted by more than one. 

The key control points are briefly defined as follows: 

� Personnel – the engineering staff itself, including its makeup, 
training, education, experience, skill, attitude, etc. 

� Management – the technical management of the company, including 
anyone with management responsibilities, and what this 
management team emphasizes, requires, and does. 

� Process – Written or unwritten policies and procedures describing 
what is to be done and how. 

� Culture – The less tangible aspects of the way the members of the 
engineering staff treat each other, the way they view and interact 
with customers, etc. 

� Requirements – The authoritative source of information about what 
the product is supposed to do and how it is supposed to do it. 

� Tools – Any and all hardware, software, etc. that the engineering 
staff can use to improve their ability to complete their assigned 
tasks. 
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� Product - the product itself, including its complexity, its 
interoperability requirements, its user interface, etc. 

Table 1.  Factors Affecting Defect Prevention 

Defect Creation Factor Pers
onn

el

M
an

ag
em

en
t

Pro
ce

ss

Cultu
re

Req
uire

men
ts

Too
ls
Pro

du
ct

Experience and/or education of developers X

Experience and/or training of developers with tool set, 
OS, compiler, or third party software being used. X X
Realism of development schedules X X
Extent of developer unit and integration testing X X X X X
Clarity and realism of requirements X
Stability of requirements X X X
Flexibility of process and schedule to handle the 
unanticipated X X
Presence and quality of high-level specifications 
and/or designs X X
Development staff acceptance of responsibility for 
quality, regardless of presence or competence of 
separate testing staff. X X X
Usable and reliable build tools and process X X
Presence and usability of source control tools and 
process. X X
Level of resistance of development team to "gold 
plating." X X X X
Amount of customer or key stakeholder feedback 
during requirements, design, and early prototyping 
phases. X X X
Caution exercised in modifying poorly understood or 
poorly documented code. X X X
Code base size X
Availability of helpful development tools (CASE tools, 
simulators, emulators, debuggers, etc.) X
Management emphasis on quality (with accompanying 
rewards). X
Familiarity of UI designers with domain in which 
product will be used. X X
Fluency of UI designers in language in which the UI is 
being written. X X
Willingness of developers to share information, help 
each other, take responsibility, etc. X X
Resiliency of software architecture to evolution and 
change. X X  

Notice something very interesting from the table.  If we count the number of 
defect prevention factors over which each control point exerts influence, we 
get the relative influences depicted in Figure 8. 
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Figure 8.  Relative Spans of Influence Over Defect Prevention 

Right away, some very interesting conclusions leap out at us.  First, as much 
as we might like to lay the blame for defect creation on the complexity or 
uniqueness or past mistakes made with the product itself, the truth is that the 
product itself plays a very minor role in affecting the number of new defects 
that will be created as it is expanded, enhanced, or debugged. 

Second, notice that management has the highest potential impact.  This is 
great news for any manager who identifies with the feeling of despair that we 
mentioned in the Introduction.  Managers have more influence than any other 
factor.  And since managers generally have the ability to select their 
personnel, Figure 8 vastly understates management influence.  The moral of 
the story is:  if you as a manager want a more profitable quality, the power to 
achieve it is in your hands. 

Only a little less important than management in effecting the creation of 
defects are personnel and processes.  It should be obvious that it is critical to 
get your people on board with your quality efforts.  We’ll discuss how to do 
that more in Section 5. 

And, alas, process rears its ugly head again.  But before we slip back into 
despair, let’s step back and take an objective look at what this table is really 
telling us.  Although there are many opinions in this area, there are some 
areas of very strong agreement that have emerged over the years: 

1. A good process is easy to understand and as easy as possible to 
implement. 
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2. A good process is flexible enough to handle the unexpected and to 
allow smart people to use their discretion, but defined enough to 
keep such discretion from devolving into laziness. 

3. The emphasis on quality is completely integrated into a good 
process.  It is not a separate consideration. 

4. A good process provides abundant feedback to team members, to 
management and, as far as is reasonable, to customers. 

5. A good process is actually followed – not just put in place as a 
smoke screen or a “feel good” measure. 

6. There are crystal clear reasons behind each and every aspect of a 
good process and all of these reasons are communicated to team 
members early and often.  Any action prescribed by the process 
without a compelling reason behind it should be eliminated. 

Beyond these few guidelines, the best process for your organization is the one 
that works for your organization.  So don’t let yourself be weighed down by 
the need for a process.  Put something into place that works for you and 
change it when the need for change becomes obvious. 

4.2. Opportunities to Discover Defects 

Table 2 lists some of the factors affecting defect discovery and again 
indicates key points of control for each factor.  In this case, there are 23 
detailed factors. 

Again analyzing the levels of influence of the seven primary points of control, 
we arrive at the breakdown shown in Figure 9. 

Immediately, we notice that management and personnel are even more 
important to defect detection while the product itself is less important.  Given 
the examples of quality failures from Section 3, this should come as no 
surprise.  It takes a deliberate management decision to put a test team into 
place. The manager and members of this team must have a mindset that is 
quite unique among software professionals.  So it seems clear that if we want 
to find our defects before our customers find them, we need people whose 
mission is to find defects.  Moreover, they must be the right people and 
management must support them. 

Once a superior test team and its management are in place, then we can move 
on to worries about process and culture.  Of course, the process guidelines 
listed in the preceding section also apply here.  But note that team culture is 
of much greater importance in defect detection than it was in defect 
prevention.  Here’s why… 
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Table 2.  Factors Affecting Defect Detection 

        

Defect Detection Factor Per
so

nne
l

M
an

ag
em

en
t

Pro
ce

ss

Cultu
re

Req
ui

re
m

ents

Tools
Pro

d uc
t

Independence of test staff X X

Experience of test staff with good testing practices. X X
Experience of test staff with software in the domain of 
that under test. X X
Emphasis on functional test coverage. X X X X
Effectiveness of test planning. X X X
Appropriateness of test staff assignments vis a vis staff 
strengths. X X X
Availability of helpful test planning and management 
tools. X
Availability of helpful defect reporting tools. X
Level of management support to the mission of the 
independent test team (with appropriate reward 
system). X
Availability of specialized tools for execution of tests 
(highly dependent on product under test, but may 
include anything from frequency analyzers to 
simulators to network traffic generators). X

Experience and training of test staff with various tools. X X X
Understanding by test staff that their job is not to prove 
that the software works, but that it doesn't  work (i.e., to 
break it before the customer does). X X X
Ability and willingness of test staff to test beyond 
written requirements. X X
Acceptance by test team of responsibility to fully 
assess (but not to assure) the quality of the product. X X
Test team access to complete and stable 
requirements. X X X
Test team involvement in requirements analysis and 
review. X X X X X
Test team involvement in scheduling. X X X X
Realism of time and resources allocated to testing X X
Repeatability of tests performed. X
Usability of the product under test (the harder it is to 
use, the harder it will be to test). X X
Existence of alpha and beta test programs. X X
Culture of teamwork among test engineers. X X X
Culture of teamwork between test and development 
staffs. X X X  

If a test team is doing its job well, they are producing a lot of what developers 
would consider bad news.  Nobody likes to have his or her mistakes made 
public, but that is exactly the mission of a test team.  So to minimize the 
potential emotional impact of this situation, it is important that both 
developers and testers have a positive, professional, team-oriented, thick-
skinned attitude.  Management must not only model this behavior, but must 
insist on it in their teams and must nip any adversarial attitudes in the bud.  
Also remember that if developers’ mistakes are not found by the test team, 
then they will be found and made much more public by our customers! 
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Figure 9.  Relative Spans of Influence Over Defect Detection 

4.3. Opportunities to Correct Defects 

As with prevention and detection, there are several factors that contribute to 
how quickly and inexpensively reported defects can be found and corrected.  
Some of the more important ones are listed in Table 3. 

There are 12 factors listed in Table 3, with the key control points breaking 
down as shown in Figure 10. 

Once again, management and personnel far outweigh the other control points 
on the list, but culture has moved even higher in the list.  For debugging 
efforts, the cultural influence is primarily a question of how closely the 
development and test teams are willing and allowed to work together.  In a 
close-knit culture with a high level of cooperation, test engineers can make 
significant contributions to the debugging effort.  If this teamwork is not 
present, debugging efforts are much less efficient. 
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Table 3.  Factors Affecting Defect Correction 

        

Defect Correction Factor Per
so

nn
el

M
an

ag
em

ent

Pro
ce

ss

Cultu
r e

Req
uir

em
e

nts

Tools
Pro

duc
t

Debugging skills of development staff X X
Repeatability of reported defects X X
Number of coexistent defects per function point (large 
numbers of defects will exhibit correlated symptoms 
and make debugging diffucult). X
Availability of adequate debugging tools. X
Readability and maintainability of software base. X X X X X X X
Development staff turnover. X X X
Ability of test engineers to assist in debugging efforts 
(if asked). X X X
Availability of large or unique hardware configurations 
for reproducing rare defects. X
Management emphasis on elimination of defects as a 
measure of product quality accompanied by 
appropriate rewards. X X
Cultural recognition of  maintenance activities as key 
to the success of the product (i.e., if the "good" 
developers always get assigned to the new products 
or features, then maintenance must not be as 
important). X X X
Extent of customer support feedback into development 
priorities. X X X
Culture of teamwork between test and development 
staffs. X X X  
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Figure 10.  Relative Spans of Influence Over Defect Correction 
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5. Getting Objective Data 

At this point, we have established that: 

1. An optimal level of quality investment exists, and we risk losing 
significant profit potential if we miss it. 

2. Despite abundant proof of the importance of quality, most 
development shops seriously neglect some aspect of it. 

3. The neglect of quality will negatively impact our products, customers, 
businesses, and lives. 

4. There are straightforward steps that can be taken to prevent defects, 
to ensure the discovery of defects, and to correct defects, each 
connected to one or more identifiable areas of responsibility. 

Yet the question remains:  We know about all of these things, and we are doing 
many of them, but how do we know which ones are the most cost effective?  
There is no perfect answer to this question, but there are ways to get feedback 
that will move a project in the right direction. 

5.1. Feedback on Defect Prevention 

The primary metric for measuring the effectiveness of prevention efforts is 
defects per unit of software functionality (defects in this case being limited to 
those reported after a build has gone to system test). 

Much has been written over the years concerning how to fairly and accurately 
measure software functionality.  Function point analysis seems to have the 
most venerable pedigree and the most flexibility [Garmus & Herron, 2000].  
The problem with function point analysis is that significant training, expertise, 
and experience is required before a software professional can really do it 
accurately.  That may be the case, but in some cases where software products 
have very large distributions, it is probably well worth the investment, 
especially given the potential variety of uses to which the technique may be 
put.  Even if we cannot afford the investment in rigorous function point 
analysis, we can probably get closer than a wild guess by calibrating simpler 
counting techniques to spot function point analyses. 

The defect-per-functionality metric should be done on a per “module” basis (a 
“module” being a block of code encompassing a single relatively small and 
independent set of features) and on a per developer basis.  If we measure this 
on a per developer basis, then we really should also measure developer 
productivity as well (units of functionality added per month or similar 
measure).  If we don’t, our metric will improve our defect rate, but will also 
slow production. 

A lot of very experienced people in the software development and quality 
fields argue against using metrics that gauge individual performance.  These 
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experts’ experiences are perfectly believable but their prescriptions are dead 
wrong.  First, to say that a software team should not use a metric because its 
members will find ways to cheat and distort it seems to be tantamount to 
making excuses for lying, cheating, irresponsibility, and immaturity.  These 
issues should be addressed separately.  Honesty and integrity are 
requirements of any profession and software engineering should not be 
excepted.  Management should expect and accept no less, regardless of the 
process chosen.  Secondly, arguing against using these metrics because they 
are dangerous seems very similar to saying “you can cut yourself with a knife, 
so never use knives.” 

Michael LeBoeuf, in his classic book “How to Win Customers and Keep Them 
for Life,” [LeBoeuf, 1987] points out that there are 3 ways for employers to get 
what they want from their employees: 

� Tell them what you want 
� Show them what you want 
� Measure and reward what you want 

It is plain at a glance that these are listed in order of increasing effectiveness.  
If we tell our developers that we want productivity and quality and then 
demonstrate to them that we have absolutely no intention of objectively 
measuring either, they’ll get the real message loud and clear: quality and 
productivity are not really important. Moreover, we will have demonstrated 
our duplicity, which our team members can smell from miles away.  Michael 
LeBoeuf goes on to say, “if someone tells you that what he does can’t be 
measured, you can safely bet that he isn’t doing much.” 

That being said, we should keep in mind the cautions that have been 
broadcast by others concerning using metrics, especially when they are tied to 
personnel.  That which we measure and reward, we are guaranteed to get 
more of and that which we measure and punish, we are guaranteed to get less 
of.  So before we start using metrics like these, we need to think carefully 
about what warped incentives we might be inadvertently injecting.  Only if we 
are convinced that they are minimal and/or manageable should we implement 
the metrics. 

Just by making these two measurements, we should see an improvement in 
our quality and our productivity because of the psychological impact.  But we 
also can use the data in a couple of important ways. 

The defect-per-unit-functionality metric is a great first-order way to discern 
how each of our developers is performing where quality is concerned.  We 
should avoid any direct numerical tie to raises or bonuses, but we should take 
this data into account and our developers should know that we consider it.  
We may discover that a developer is a terrific debugger but is a relatively poor 
unit tester or that another is great at UI design but poor at data structures.  
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Such serendipitous results are very extremely valuable.  We can only improve 
when we are aware of the need for improvement! 

The second and much more important way to use these metrics is to use the 
per module defect data to identify modules that are good targets for 
refactoring or rewriting.  If one module or feature represents 8% of the code 
and accounts for 28% of the defects, then we are well advised to review the 
design of that module. 

5.2. Defect Detection Metrics 

5.2.1. Defect Arrival Rate 
Basic defect arrival rate data can be pulled directly from any good defect 
tracking tool.  Development and test managers should at least look at this 
metric for potentially useful information.  In some cases, the “noise” may 
overwhelm any trend present in the defect arrival rate and the metric may 
be useless - but it never hurts to look. 

5.2.1.1. The Theory Behind Defect Arrival Rate Analysis 

Defect arrival rate (AKA latent defect) analysis is simply an attempt to 
estimate the number of remaining defects in a product based on the 
rate at which defects have been detected during system testing.  This 
technique takes advantage of the diminishing rate of returns for testing 
that we saw in Figure 1. 

To perform a defect arrival rate analysis, we begin by graphing the 
defects found per unit time vs. time as illustrated in Figure 11.3  The 
discrete points in Figure 11 clearly indicate a trend that looks a lot like 
the trend in Figure 1.  The analysis involves first spotting such a trend 
and then fitting a curve (such as a Weibell, Rayleigh, or decaying 
exponential) to the data using a method such as a minimum variance 
least squares curve fit. 

If a trend is apparent in the data, the question of what curve to use to 
fit the data is academic and pointless.  As discussed in Hoffman [2000] 
the data under analysis are not going to adhere to the assumptions that 
the pure math demands for any curve.   

                                       
3 The data in Figure 11 are for an unusually long project and are much better behaved than in 
most real-world projects. 
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Figure 11.  Example of Defect Arrival Rate Data 

 

But this does not matter nearly as much as the fact that the math will 
allow you to find a way to use the data to estimate the remaining 
defects at any point in time.4  So we can fit the data with any function 
f(t) that 

� Fits the data well. 
� Decays asymptotically to zero as test time approaches 

infinity. 

� For which ∫
∞

T

dttf )( is a finite, positive number. 

In fact, there is no harm in trying several curves before choosing one. 

Once a function is chosen and is fit to the existing defect arrival rate 
data, an estimate of the remaining defects is obtained by integrating 
the curve from the last data point to infinity as illustrated in Figure 12. 

 

 

                                       
4 Just bear in mind that the actual uncertainties are a little higher than the mathematical results 
will suggest because your model is not perfect. 
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Figure 12.  Defect Arrival Rate Analysis 

5.2.1.2. A Short Test Project Example 

Let's look at the application of this analysis technique to a very short 
(totally fictitious) test effort.  Let's say that, so far, our test team has 
been testing for one full week.  In one week of testing, the test team 
has found 39 defects.  The defects have arrived as follows: 

 Day of Week Day No. No. Defects 

 Monday 1 11 

 Tuesday 2 10 

 Wednesday 3 7 

 Thursday 4 7 

 Friday 5 4 

 

This data is graphed in Figure 13. 
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Figure 13.  Defects Found Per Day 

As presented in Figure 13 (the most common way of viewing defect 
arrival rate) the data look pretty scarce.  But there is a definite trend 
toward fewer defects being found each day.  We can try fitting a 
decaying exponential curve to the data of the form 

 btaeD −=&  (1) 

where 

t is time in days, 

a and b are arbitrary positive constants to be determined by the 
curve fit, 

and where 

 
dt

dD
D =&  (2) 

is the defect arrival rate where D is the sequential defect number at any 
time t.  Figure 14 shows the data from Figure 13 with the curve fit and 
the resulting equation added.  The curve fit estimates the constants a 
and b as follows: 

024.15≅a  

238.0≅b  
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Figure 14.  Small Project Defect Arrival Rate 

To estimate the number of remaining defects using this equation, we 
integrate it from 5 days to infinity.  We'll skip the math here for the sake 
of brevity, but the estimated number of undiscovered defects is 19.  
This is actually not a bad estimate (we generated the data and therefore 
know that there are actually 21 defects remaining at this point). 

There is one situation to which this technique cannot be applied: If 
there is ever a unit of time in which no defects are found, then the curve 
fit attempt will fail completely and no solution will be possible.5  For 
such a case, we'll need another approach.  

5.2.1.3. Viewing the Same Data Differently 

Another way to look at the same data is as test time between defect 
reports.  This alternate view is particularly useful for very short test 
cycles or low defect counts (as in this example) or where there are 
periods of time where no defects are found.  Figure 15 illustrates our 
short test project data as time between defect reports. 

At first glance, this view of the data does not look very helpful.  There 
are a lot more data points, but there is also a lot more noise in the data.  
But before we give up, let's look at how we might find a useful solution. 

 

                                       
5 The reason for this is that the solution for the curve fit is actually performed in natural 
logarithm space and the natural logarithm of 0 is undefined (negative infinity). 
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Figure 15.  Days Between Defect Reports 

We can start with equation (1) (estimated defect arrival rate) and can 
solve for the corresponding time between defects.  If the defect arrival 
rate is given by equation (1), then the time between defects must be 

 
bDa

Dt
−

=∆ 1
)(  (3) 

where a and b are the same constants as in equation (1) and where D 
can be thought of as the sequential defect number (the derivation of 
equation (3) from equation (1) is left to the reader). 

We can now estimate a and b again by fitting a curve of the form given 

in equation (3) to the data in Figure 15.  Doing so gives us 

21.14≅a  

231.0≅b  

Note the similarity between this estimate of a and b and the previous 

estimate.  Figure 16 shows the curve fit and the resulting equation.   

Since this a and b are the same constants as in equation (1), we can 
plug them directly back into equation (1) to get our alternate estimate 
of the defect arrival rate: 

 teD 231.021.14 −=&  (4) 
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Figure 16.  Days Between Defect Reports with Curve Fit 

5.2.1.4. Making Decisions Using Defect Arrival Analysis 

Of course, the point is not that one of these visualization techniques is 
inherently better than the other.  Rather, the point is that where one is 
unhelpful, the other is an available option. 

How can this analysis help us?  We already know that we have found 39 
defects in one week of testing.  Integrating equation (4) from 5 days to 
infinity tells us that there are about 21 defects remaining (recall that we 
estimated 19 remaining defects using the decaying exponential fit).  In 
other words, about 1/3 of all of the defects entering system test still 
remain undiscovered.  Our analysis tells us that it will take a ridiculous 
amount of time to find all of the remaining defects (plug D=60 into 
equation 3 with our estimates of a and b to see how ridiculous).  That 
information is not very helpful.  But how many bugs could we find if we 
spend another week testing?  To estimate this, we integrate equation (4) 
from 5 to 10 days. 

Doing so tells us that we should discover an additional 13 defects in 
another week of testing, leaving only 7.  This being the case, we will 
certainly keep testing.  Then we can always wait until the end of the 
second week to decide whether to continue testing beyond that time.  
But what might we accomplish by adding test resources to the effort?  
We can estimate the effect of doubling our test resources by integrating 
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from 5 to 15 days rather than from 5 to 10 days.6  We estimate that 
doing so should result in the discovery of 17 more defects in the next 
week, leaving only 3. 

There is one final caveat concerning defect arrival rate analysis.  The 
primary problem with the defect arrival rate metric is the variation in 
the amount of actual testing per unit calendar time.  If we simply use 
calendar time for our analysis while our test staff was diverted to 
training or support for two days – or if someone was out sick for half a 
day – then the arrival rate data can be muddied to the point of 
uselessness.  Some defect arrival rates look like textbook examples of 
familiar curves when no attempt is made to calibrate for actual test 
time.  Others are quite literally useless unless such a correction is 
made.  Still others are simply useless for a host of other unavoidable 
reasons. 

But if we can get our test staff to record when they actually start and 
stop testing, then we can reduce the noise in the data.  This 
significantly improves the odds of getting useful information from this 
metric.  This will have the bonus side effect of making our test 
engineers aware of how much time they are spending on activities other 
than testing and should increase our test productivity.7 

5.2.2. Test Team Performance 
The suggested metric for gauging test team performance is the percentage 
of defects found after product release.  This metric should be assembled 
by module or feature, and should ultimately be correlated to test engineer 
areas of responsibility.  Remember, the point of testing is not to confirm 
that a product is great (although testing might do that), but to find defects 
before the customer finds them.  If this metric is used, it must somehow be 
calibrated against the software functionality covered by each tester and 
against the absolute difficulty of performing tests in each of the various 
software areas. 

The same arguments and cautions that were covered in Section 5.1 (i.e., 
concerning metrics gauging individual performance) apply equally well 
here.  If we doubt our ability to account for coverage and difficulty among 
our individual testers, consider this:  the alternative is to ignore data that is 
readily available and guess at all aspects of a tester’s performance.  Most 
competent engineers prefer that their supervisors gather any and all 
objective data that is available. 

                                       
6 I.e., adding two weeks assuming constant resources is equivalent to adding one week of 
doubled resources. 

7 As a test engineer, I will say without hesitation that I am happy to take this extra step in order 
to improve the usefulness of the defect arrival rate data. 
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5.3. Defect Correction Metrics 

Of all of the ways to spend time and money on quality, correction of known 
defects is undoubtedly the simplest way to get a quick return on investment.  
Does this mean that we should correct every known defect regardless of its 
severity before we can release? Not necessarily, just as we would not continue 
to test until the software is “perfect.”8  But it is obvious that fixing a known 
defect is almost always less costly than finding and then fixing an unknown 
defect. 

A quick review of Sections 2.4 and 2.6 suggests that the best source of 
information concerning the cost of released software defects is our support 
organizations.  Beyond that, customers, competitors, and industry peers 
provide valuable feedback, even if it can sting sometimes.  Without even 
attempting to develop a mathematical or statistical solution to this problem, 
we can ask ourselves several questions: 

� What percentage of call center’s time is spent on calls about actual 
defects in software (versus customer questions, confusion, etc.)? 

� What percentage of field engineer time is spent on explaining or 
working around actual defects in the software (versus nominal 
installation assistance, etc.)? 

� Is there a subset of defects that seem to generate an inordinate 
number of calls or a high level of surprise, anger or frustration 
among customers? 

� Have customers postponed initial or follow-on purchases or 
threatened to do so until some bugs are fixed?  Do we typically have 
such a “punch list” with new customers? 

� If our product was reviewed by an industry publication, how was it 
rated for reliability? 

� How do our technical and field support teams rate the reliability of 
our product? 

� Do we include a list of known problems with every release of our 
product?  If so, do they describe serious problems or require 
acrobatic workarounds or are they minor irritants that are easily 
ignored? 

� Does our test and/or development staff often get called upon to help 
solve support issues? 

� Have our customers begun to skip the call center and call the 
engineering staff – or worse yet, the CEO – about their problems? 

                                       
8 By the way, finding the 59th defect in our previous example is estimated to take an additional 
36 test-hours after the 58th defect is found.  Finding the 60th defect would take an infinite 
amount of testing according to our estimate.  These numbers are only estimates for a 
fabricated example, but the law of diminishing returns for testing is very real. 
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� Are we having any difficulty getting insurance in field with high 
liability risks?  What about certifications?  Agency approval? 

� When we demonstrate our product, are there some features we 
intentionally avoid because of their usability or reliability? 

There are more such probing questions that could be asked, but this list 
should clearly illustrate the point.  If we aren’t asking these questions at all, 
then we are almost certainly underspending on quality.  If we answer them 
objectively, then the answers will tell us if we have a quality issue. 

Once we have the answers to these questions, the next place to look is in our 
defect tracking database.  Did we release with several known defects?  Were 
any of them marked with a severity level greater than minor?  If so, we’ll 
probably see the effects in the answers to the questions above.  Even if we 
released with only minor defects, we may see them showing up in our tech 
support costs (see Section 3.3 above).  In that case, we will probably save 
money by fixing them. 

Another bit of data that we can collect and analyze in this area concerns 
implicit feature requests and documentation defects.  Once we have analyzed 
our tech support expenditures on defects, let’s go back and review them 
again.  Are there certain features or procedures that frequently seem to 
confuse customers?  Are there feature requests that have come up repeatedly?  
Even if such requests are not identical, there may be groups of them that 
point to a deficiency in some area of the software, help system, and/or 
documentation.  Any such areas that are identified should be slated for 
enhancement as soon as possible.  Doing so will improve our customers’ 
experience and again reduce our support costs. 

One final note on defect correction…  Remember that a defect can have 
effects beyond those that are immediately obvious.  Moreover, defects can 
mask or exacerbate each other.  The more defects there are in a product, the 
greater this negative interaction between defects.  Allowing defects to 
accumulate in a product over multiple releases (which is what will happen if 
the decision is made in each release not to fix all of defects that were found) 
will eventually result in an unmanageable defect database and product of 
diminishing quality. 

6. Conclusions and Recommendations 

So how do we analyze the metrics and use them to effectively accomplish the 
simultaneous optimization of defect prevention, defect detection, and defect 
correction?  The bottom line is our comfort level with the answers to the 
questions in Section 5.3.  If we at least make the effort to examine our support 
efforts and our testing efforts, we are more likely to move toward the optimal 
point.  If we are happy with our answers to all of the questions in Section 5.3 
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and we spend a good deal of money on defect reduction efforts, then we may 
be overspending on quality.9   

6.1. Concerning Test Automation 

One final recommendation concerning defect prevention deals not so much 
with metrics, but with the means of preventing defects.  I have never actually 
witnessed a development shop that clearly and adequately defined “unit test.”  
It would seem that this should be taught in software engineering programs, 
and maybe it is, but we will probably dramatically improve our defect 
prevention performance by simply offering our staff a clear definition of a unit 
test.  Consider the following proposed definition: 

A software unit test is a white-box test written and executed by a 
developer against his/her own code with the intent of exercising it as 
completely as possible and in small units.  The unit test should focus on 
exercising the software as software, not necessarily as an integrated 
product. 

The reason for this definition is very simple.  Very little value is added if 
developers simply try to predict what system testers will do and beat them to 
the punch.  Doing so will not be terribly effective (it takes an entirely different 
temperament to be a good tester than to be a good developer).  But even if it 
is perfectly effective, it is nearly a total duplication of effort!  It is hard to 
imagine anything less optimal. 

Most system tests do not lend themselves readily to automation [Kaner, et. al, 
2002].  On the other hand, almost all unit testing can and should be 
automated.  Barry Mullan, at the Year 2000 Pacific Northwest Software Quality 
Conference, presented a paper called “The Future of Developer Testing for 
Java” [Mullan, 2000].  In this paper (most of which easily generalizes beyond 
Java) he demonstrated that the largest gains to be realized from test 
automation are in unit testing.  He is not the only person preaching this 
message. 

Furthermore, rigorous unit testing is much more likely to uncover those really 
nightmarish bugs like errant pointers, memory time bombs, memory leaks, 
etc. that are often difficult if not impossible to reproduce in a fully integrated 
system. 

6.2. Prioritizing Quality Improvement Efforts 

Is there an order of importance to the above recommendations for eliminating 
defects?  To some extent, there is.  To get at the answer to this question, let’s 
recall a few points: 

                                       
9 If you are in this position, give me a call.  I'd love to meet you and talk about how you got to 
this point. 
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� According to TARP [Goodman, 1999] it costs anywhere between 2 
and 20 times as much to gain a new customer as to retain an 
existing customer.  So we are well advised to make our existing 
customers happy before worrying about new ones. 

� It is a lot cheaper to fix a known defect than to find and fix an 
unknown one. 

� We can’t fix defects that we don’t know about. 
� People are a lot more important than processes or tools (refer back 

to Section 4). 
� Automation efforts are best directed at white box unit testing. 
� Duplication of testing effort between system test and development 

test is a waste of resources. 
� Having and using objective data is better than not having or not 

using objective data. 

The relative importance of our recommendations now becomes apparent.  
Here is the suggested order of priority: 

1. Hire/promote managers and development and testing staff carefully.  
If the goal is quality, then the development staff must be on board. 

2. Gather objective data.  We can’t address problems that we don’t know 
about. 

3. Measure and reward quality results (not just "efforts"). 

4. With very few exceptions, fix all known defects. 

5. Prevent defects whenever possible during development (No. 3 above 
and a good definition of a unit test is a great start). 

6. Find the defects that can't be prevented and fix them when they are 
found. 

7. Assess product quality before release by testing deliberately and using 
latent defect estimates. 

8. If test automation is used, then focus on automating unit tests before 
system tests. 

Note that none of the above recommendations include recommendations 
concerning process.  If, after implementing some or all of these 
recommendations, we want to standardize on them, we can certainly do so.  
But the point of this paper is that anyone can make great strides toward better 
quality and higher profits without implementing someone else’s onerous 
process. 

Of course, there is one tacit assumption that pervades the entire discussion 
and that is that the data discussed throughout this paper is actually being 
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collected.  If it is not being collected, then, of course, doing so is the obvious 
place to start. 
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Appendix A – Impact of Delay on Revenue Potential 

Any new product has revenue potential that at first grows as the market 
approaches its “sweet spot” in demand for the product.  At times prior to this 
sweet spot, the market demand has simply not fully crystallized. 

For example, although there is a sizeable market for 200+ GB hard drives 
today, the market for such drives 20 years ago would have been a tiny fraction 
of today’s market because if there was enough digitized data in the world to fill 
one of these drives in 1985, there certainly was not in the average household! 

Then, as time marches on, competitors will enter the field and will begin to 
compete for a limited number of customers.  They will find ways of producing 
better competing products and selling them at reduced prices.  If our product is 
not likewise improved, it will see rapidly diminishing marketability.  This market 
potential versus time is illustrated in Figure A1. 
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Figure A1.  Potential Revenue vs. Time for a Stagnant 

Product at a Given Quality Level 

But when deciding when to release a product, we are not as interested in a 
quarter-by quarter look at revenue potential as we are in the lost opportunity 
costs due to delaying the release.  A more useful way to present this 
relationship is as potential total revenue for a product given a specific release 
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date.  Such a curve would be obtained by starting at each point on the graph in 
Figure A1 and integrating to infinity.  Figure A2 illustrates this result for 
several quality levels. 

Figure A2 illustrates that the potential total revenue for a product is highest 
when the product is released as early as possible and that this potential begins 
to decay at an increasing rate at some point – consistent with increased 
competitive pressures.  It also shows that the potential total revenue increases 
with the quality of a product, but that even for high quality products, potential 
revenue falls to an unprofitable level eventually.  Figure A2 expresses yet 
another thing that we all know instinctively:  quality is great, but not if it causes 
us to miss the window of opportunity when the market presents it. 
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Figure A2.  Potential Total Revenue vs. 
Release Date for Several Quality Levels 

So to recap the costs of high quality, Figure 5 illustrates that beyond a certain 
point, incremental increases in quality get very expensive.  And Figure A2 
warns us against letting our testing and debugging take too long. 
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