

Optimal Attention to Software Quality:

If You’re Guessing,

You’re Probably Wasting Money

Bill Tepper
November 14, 2005

Provaré Technology
5174 McGinnis Ferry Road, #259

Alpharetta, GA 30005

E-mail: info@Provare.com Web page: http://www.Provare.com/

ii

Table of Contents

1. Introduction .. 1

2. Optimal Quality is Optimal Profit .. 2
2.1. Why Aren’t We All Optimal? ... 2
2.2. Defining Quality ... 3
2.3. The Costs of High Quality ... 3
2.4. Costs of Poor Quality ... 4
2.5. Total Costs vs. Quality ... 5
2.6. Impact of Quality on Revenue ... 7

3. The Costs of Failing to Optimize... 9
3.1. Failing at Defect Prevention... 9
3.2. Failing at Defect Detection .. 10
3.3. Failing at Defect Correction ... 11
3.4. Failing All of the Above ... 11
3.5. Incredible, but True ... 12

4. Opportunities for Quality Improvement..13
4.1. Opportunities to Prevent Defects .. 13
4.2. Opportunities to Discover Defects .. 16
4.3. Opportunities to Correct Defects .. 18

5. Getting Objective Data ...20
5.1. Feedback on Defect Prevention ... 20
5.2. Defect Detection Metrics ... 22
5.3. Defect Correction Metrics .. 30

6. Conclusions and Recommendations ...31
6.1. Concerning Test Automation .. 32
6.2. Prioritizing Quality Improvement Efforts 32

Appendix A – Impact of Delay on Revenue Potential35

References ..37

1

1. Introduction

Software development is one of the most complex and high-risk endeavors that
any business can attempt. The rates of change in the marketplace and
technology that confronts most software projects is enormous. To overcome
these challenges, decision makers must make use of a combination of business,
project management, marketing, and technical skills that no other industry in
human history has ever required.

Each of these four skill sets has a different focus and each has developed its
own unique language to communicate its particular point of view. Finance
types speak of revenues, costs, expenses, investments, and profits. Project
managers are more interested in schedules and the best use of scarce
resources. Those focused on marketing are more interested in market
conditions, product appeal, product niches, salability, feature sets, competition,
and customer reactions. Engineering managers are quite content to leave these
issues to those in the “front offices,” instead preferring to focus on the
technical challenges of developing a product with a rich, cutting edge feature
set and having fun doing it. It is rare to find leaders who speak more than one
of these languages fluently. This difficulty in communicating between these
fundamental business disciplines pervades technology development, but seems
to hit software development particularly hard.

This nexus of communication, while a major source of both critical product
defects and product development opportunities, is almost completely neglected
by the processes favored by each individual discipline. There is only one branch
of software development whose primary focus is this very nexus – Software
Quality Control. Remarkably, what may be the most profitable aspect of
software development is often the most neglected.

No one wants to overspend on product development. But the costs of releasing
defect-laden software are significantly greater than most people assume. Many
development managers intuitively “know” this to be true, but relying solely on
intuition is a costly mistake – as will be illustrated by several real-world
examples in Section 3. The good news is that there is a goldmine of data right
at our fingertips that will guide us to the most profitable level of attention to
software quality. All we need to do is use it.

There are three primary opportunities for quality improvement in a
development organization:

� Defect Prevention – preventing defects from reaching system test.
� Defect Discovery – Finding and documenting defects before they

are released to customers.
� Defect Correction – Correcting defects that are discovered and

reported.

2

There is an optimal attention to – and expenditure on – each of these areas.
Since we are discussing product development in the context of a business,
when we say optimal, we mean most profitable, of course. Let’s examine the
income and expense contributors to this optimal point…

2. Optimal Quality is Optimal Profit

Intuitively, it is not hard to imagine a case where a development organization is
so indifferent to quality that its product is entirely unusable. On the other end
of the spectrum, we can imagine an organization that consists only of test
engineers and process supervisors, but with no product actually being
produced. Given the conceptual existence of these extremes and given the fact
that technology products do get produced, sold, and used in the real world, we
may conclude that somewhere between these two extremes must lay a realm
where profitable development takes place.

2.1. Why Aren’t We All Optimal?

Given that level 5 of the SEI’s Capability Maturity Model is entitled
“Optimizing,” there is probably a broad consensus that software development
can be optimized in some sense. This topic has been studied, discussed, and
preached in a variety of forums and from a variety of angles for many long
years. And yet the SEI still estimates that the bulk of software shops are CMMI
level 1 or 2. None of the organizations with which the author has any level of
experience ever actually behaved in a manner suggesting any awareness of
the benefits of self-examination and optimization. Nor have any been at a
CMM or CMMI level greater than 2.

So we are left with a puzzle of sorts. Do the research and writings lack
credibility? Does the typical software engineering or product development
manager simply not know about these options? Is it merely a perception
problem? It may be a combination of many factors, but consider the following
possibility: the unintentional academic emphasis on process rather than on
common sense behaviors has caused many, if not most, development
managers to throw their hands up in resigned despair before the battle has
even begun. They reason (or simply feel) that they do not have the bandwidth
or the energy required to cause their teams to adhere to the onerous
processes that they believe are required for achieving or even approaching
optimal quality levels with their scarce resources, and they never give the
matter another thought. In a very real sense, then, the perfect has unwittingly
become an enemy of the good.

It is the assertion of this author that any manager of any technology
product development effort can, with a few straightforward steps, make
significant progress toward optimizing his or her emphasis on product
quality, thereby substantially improving the profitability of his/her
product.

3

2.2. Defining Quality

Although this is admittedly a relatively narrow definition, for the purposes of
this analysis, we shall define quality as:

Quality – a measure of the extent to which the product meets its
defining requirements without defects.

This definition allows us to propose the following hypothetical quality
boundaries:

Perfect - The product meets or exceeds all defining requirements and
has zero defects. Quality measure is 100%

Perfectly Useless - There is no correlation at all between the product’s
functionality (if any) and its defining requirements. Quality measure
is 0%.

2.3. The Costs of High Quality

With these definitions in mind, consider the chart of quality level achieved
versus amount of effort (i.e., money) spent on quality in Figure 1.

S
o
ft
w
a
re
 “
Q
u
a
li
ty
”

”Perfect” in this case is defined as
meeting 100% of the requirements and
having no defects.

0% Quality means software functionality (if any)
has no correlation with requirements at all.

“Perfect”
100%

Money Spent on Improving Quality

0%

S
o
ft
w
a
re
 “
Q
u
a
li
ty
”

”Perfect” in this case is defined as
meeting 100% of the requirements and
having no defects.

0% Quality means software functionality (if any)
has no correlation with requirements at all.

“Perfect”
100%

Money Spent on Improving Quality

0%

Figure 1. Improvement in quality with increasing expenditures on quality

Figure 1 Illustrates what our experience tells us: that it is relatively
inexpensive to make significant gains in quality when first addressing the
problem. But as the quality level approaches perfection, remaining defects
are more elusive and more costly to find – so we can never quite achieve
perfection, regardless of what we spend trying. Since we are looking for the

4

costs of high quality, let’s swap the axes on Figure 1. This gives us Figure 2,
illustrating the costs of high quality.

(100 – x)% 100%
Software Quality

Q
u
a
li
ty
 I
m
p
ro
v
e
m
e
n
t
C
o
s
t

(100 – x)% 100%
Software Quality

Q
u
a
li
ty
 I
m
p
ro
v
e
m
e
n
t
C
o
s
t

Figure 2. Cost of Quality Improvement vs. Quality

2.4. Costs of Poor Quality

Some examples of the costs of poor quality in a released product include:

� Increased field and call center support costs.
� Increased cost of producing and distributing larger numbers of bug

fix releases (potentially creating significant waste of previously
manufactured product).

� Increased certification and approval costs in regulated industries.
� Increased liability exposure and increased liability insurance costs

(e.g., in industries such as medical devices, financial transactions,
etc.)

But defects are not only costly in released software. Pre-release defects can
add costs such as:

� Increased test time per cycle and increased number of test cycles
before desired quality level is achieved (added costs of testing
defective software).

� Increased time to market because of additional testing and
debugging resulting in lost revenue.

� Increased cost of correcting defects.

5

� Lost opportunity costs resulting from tying up development and test
resources on maintenance instead of applying them to new features
or new products.

Any company can (and all companies should) know exactly how much they are
spending on support for any given product. Now consider the relationship of
support costs to the quality of the product as proposed in Figure 3.

(100 – x)% 100%
Software Quality

A
v
e
ra
g
e
 S
u
p
p
o
rt
 C
o
s
t
p
e
r
C
u
s
to
m
e
r

(100 – x)% 100%
Software Quality

A
v
e
ra
g
e
 S
u
p
p
o
rt
 C
o
s
t
p
e
r
C
u
s
to
m
e
r

Figure 3. Support Costs per Unit vs. Product Quality

Again, this curve is quite intuitive. As quality of the product increases toward
perfection, the costs of post-sales support decrease asymptotically toward
some theoretical minimum.1

2.5. Total Costs vs. Quality

Now that we have the curves in Figures 2 and 3 plotted against the same
independent variable, we can include both curves on the same chart, and have
done so in Figure 4. Suddenly these curves look very familiar. In fact, they
are very like the supply and demand curves that we all remember from
Economics 101. And it starts to become obvious that there will be a point at
which costs are minimized.

1 The theoretical minimum support costs are those that would be necessary to support a perfect
product for imperfect customers. So support costs can never reach zero.

6

(100 – x)% 100%
Software Quality

A
v
e
ra
g
e
 S
u
p
p
o
rt
 C
o
s
t
p
e
r
C
u
s
to
m
e
r

C
o
s
ts
 o
f
A
c
h
ie
v
in
g
 Q
u
a
li
ty

(100 – x)% 100%
Software Quality

A
v
e
ra
g
e
 S
u
p
p
o
rt
 C
o
s
t
p
e
r
C
u
s
to
m
e
r

C
o
s
ts
 o
f
A
c
h
ie
v
in
g
 Q
u
a
li
ty

Figure 4. Costs Affected by Product Quality

Since costs of achieving quality and costs of support are both real costs that are
additive, we can add them to produce the curve shown in Figure 5. This curve
makes it quite clear a minimum cost point really does exist.

(100 – x)% 100%
Software Quality

T
o
ta
l
Q
u
a
li
ty
 &
 S
u
p
p
o
rt
 C
o
s
ts

Lowest
Total Cost

X

Increasing
costs of
support,
sales, etc.

Increasing
costs of
quality

assurance

(100 – x)% 100%
Software Quality

T
o
ta
l
Q
u
a
li
ty
 &
 S
u
p
p
o
rt
 C
o
s
ts

(100 – x)% 100%
Software Quality

T
o
ta
l
Q
u
a
li
ty
 &
 S
u
p
p
o
rt
 C
o
s
ts

Lowest
Total Cost

X

Increasing
costs of
support,
sales, etc.

Increasing
costs of
quality

assurance

Figure 5. Total Costs versus Quality

7

2.6. Impact of Quality on Revenue2

Some examples of the impact of poor quality on revenue include:

� Lost sales and increased costs of sales

� Slower customer rollouts & slower purchase schedules
� Decreased follow-on business and/or lost customers
� Damaged reputation preventing some new sales
� Sales staff spends additional time with unhappy customers

that cannot be spent on new sales.

� Increased customer cost of ownership, resulting in a decrease in
what customers are willing or able to pay for the product.

These reductions in revenue resulting from poor quality are devilishly difficult
to measure directly, but we can get a very good sense of them by looking at
support costs. It is probably a very safe bet that as support costs due to poor
quality increase, revenue will decrease accordingly.

According to Technical Assistance Research Programs (TARP) [Goodman,
1999], for every customer who takes the time to complain about a bad
experience with a consumer product or service, somewhere between 1 and 19
more customers felt the same way but did not complain. Each of these 2 to
20 customers represented by that single support call will tell from 5 to 16
other people about their negative experience. This means that for every
complaint you hear, somewhere between 10 and 320 people have a negative
impression of your product or service. Of those who did not complain,
somewhere between 63% and 91% will never do business with your company
again.

For a business-to-business product or service, the complaint rates are higher –
75% of unhappy customers will complain. On the downside, how many of our
potential new clients will they tell? For big-ticket items where proposals are
required and references are thoroughly checked, it is a safe bet that they tell
all of them!

It is perfectly reasonable to assume that the negative impact on revenue
resulting from low quality is proportional to the corresponding increase in
support costs. So for a given fixed release date we can illustrate the impact of

quality on potential revenue as in Figure 6 (if increasing the quality pushes
out the release date, then the curve would peak at a quality level lower than
100%).

2 This section does not discuss the impact of delay of product shipment on revenue that might
result from a long test-debug cycle. For interested readers, this is treated briefly in the
Appendix.

8

(100 – x)% 100%
Software Quality

P
o
te
n
ti
a
l
R
e
v
e
n
u
e

Theoretical Maximum

(100 – x)% 100%
Software Quality

P
o
te
n
ti
a
l
R
e
v
e
n
u
e

Theoretical Maximum

Figure 6. Total Potential Revenue vs. Quality

We can now subtract our expenses (Figure 5) from our revenue (Figure 6) and
arrive at a curve relating potential profit to software quality as shown in
Figure 7. This curve clearly illustrates how an optimal quality level can
maximize our profit. So now we know not only that this point exists, but why
it exists.

(100 – x)% 100%
Software Quality

P
o
te
n
ti
a
l
P
ro
fi
t

Maximum
Profit

High Support
Costs,
Reduced
Revenues

Overspending
On

Quality

90% Optimal Profit

(100 – x)% 100%
Software Quality

P
o
te
n
ti
a
l
P
ro
fi
t

Maximum
Profit

High Support
Costs,
Reduced
Revenues

Overspending
On

Quality

90% Optimal Profit

Figure 7. Potential Profit vs. Quality

9

If we pay too little attention to quality, our revenue will be reduced and, even
if we might otherwise make a profit, it will be eaten up by support costs. If we
spend too much on quality, the marginal increases in revenue will never cover
the additional costs.

We will probably never precisely optimize our attention to quality, but most of
us would be thrilled to get 90% of the way there. As Figure 7 illustrates, we
can do so with considerable latitude.

3. The Costs of Failing to Optimize

In the preceding section, we briefly addressed the very real costs of failing to
address quality optimization. The best way to demonstrate the error of relying
on intuition or guesswork in defect reduction activities is to demonstrate with
real-life examples of how wrong a project can go.

3.1. Failing at Defect Prevention

This is probably the most often overlooked area of potential quality
improvement. Even the best organizations fail in some way here. The
unfortunate thing is that the many of the kinds of bugs that escape this step
can be the most devastating to a project.

In one example organization, the developers were quite competent. The
product was a communications product requiring that many devices be
distributed to remote locations. The product used cutting edge technology
and was extremely complex. Designs were often written and reviewed, but
code reviews were rare. And as is the case with many development
organizations, there was no definition of a “unit test,” so if any unit testing
was done, it was entirely at the individual developer’s discretion.

So defects slipped past development – and some of them slipped past system
test into the hands of several customers. And time went by. Eventually, after
enough customers called angrily saying that their devices had either
mysteriously rebooted or had locked up and stopped serving their customers,
the troops were rallied. This bug had to be found and eliminated!

At first, most of the engineering and field support departments were deployed
against this bug. But the bug simply evaded everyone. The thing was, it was
the kind of bug that does not cause any ill effects at all in the domain of its
own code. It was the type of bug that we all know and loathe – the dreaded
memory time bomb. The process in which the bug resided ran beautifully well
until some rare conditions arose that caused it to write to memory other than
its own. This failure had no immediate consequences, but once it happened,
doom was inevitable.

So two key developers were told to stay on the trail of this bug until it was
found. Code reviews were organized. Code was written to try to detect the
corruption as early as possible. Still more code was written to correct the

10

error when it did occur. Many a hair turned gray or was pulled out. But 12
weeks and several hundred man-hours later, although the code reviews had
unearthed several areas for significant improvement, the actual smoking gun
was never found.

The truth is that it is impossible to know whether or not this bug would have
been prevented if better unit testing and/or code reviews had been done. But
we certainly know what not finding it ultimately cost. Not only did the
product suffer a damaged reputation with many customers (who talk among
themselves frequently) but many hours of developer time were spent and the
bug was never found after the fact.

3.2. Failing at Defect Detection

Another case involves an innovative and complex new communications
product, finally getting a handful of customers after a considerable period of
development. Prior to release and the first few customer installations, there
had been no testing program at all, so all defects that got past the developers
were found in the field. Field engineers came from R&D staff, ostensibly
because of the complexity of the product.

After only 4 customer installations, problem reports from the field were
consuming 100% of the time of the R&D staff (about 14 engineers). Multiple
new bug fix builds were being released to the field per day, likely with new
bugs being introduced at nearly their rate of correction – there was no way to
know. No new features were being developed and no additional customers
could be supported at this staffing level. R&D engineering had completely
lost credibility with sales, program management, and customers. The R&D
staff was exhausted from working 12 to 15 hour days, often 7 days per week.

On the advice of a consultant hired by the Division President, the R&D team
added one test engineer, two field support engineers, and one change
management (CM) specialist. The CM specialist began by putting a defect
tracking tool in place and the test engineer began filling its database. The
R&D manager decided to halt all new development and spent 8 weeks doing a
release containing nothing except bug fixes. For this release, the team
literally fixed every known bug, no matter how small. Except in the rarest of
circumstances involving bugs that were otherwise not reproducible, only the
field engineers were called upon to travel to customer sites.

After these changes and the bug-fix release, as if by magic, the chaos
subsided and, over time, credibility was restored.

This team had never intentionally released a defect to the field. But they had
no independent assessment of the quality of their product other than their
customers. Once they knew about their defects and made the decision to
correct them, sanity was restored.

11

3.3. Failing at Defect Correction

This entire account was paraphrased from Kaner, et. al. [2002].

At one company, the management was very educated and aware of quality
issues. They had taken most of the recommended actions to prevent defects
and to find them. But because of the pressures of management and the
marketplace, they always deferred the minor defects – i.e., those that did not
really reduce the functionality of the product, but which caused it to do
unexpected things or were just plain annoying.

At one point in time, once the product had been released for quite a while, the
change control board decided to review the technical support call log. To
their great surprise, an analysis of these calls indicated that over half of the
technical support call hours had been spent on those many known, trivial
bugs that they had consciously decided not to fix. They postulated that they
could cut their support costs in half by fixing these bugs.

To test this hypothesis, they halted all new feature development and spent the
necessary time to fix all of the trivial bugs for which calls had been received.
They were surprised at how little time this actually took.

Once this bug fix version of the software was released, true to their
prediction, customer support costs fell by half.

3.4. Failing All of the Above

Although it seems impossible to believe, there are companies who introduce
very innovative products that fill a critical market niche, but who fail to truly
address quality at any level. One such very small startup was in its fourth year
of business and had even reached cash flow positive status. And yet, there
was no independent test department, no review of tech support calls, no post
mortems, etc.

It was not that the CEO was indifferent to quality. In fact, when the
suggestion was made to him at one point that he needed to establish a testing
program, his response was “what do you mean there are bugs in our
software?!!!” He was serious. He thought that every effort was already being
made to assure not just quality software, but perfect software. And yet he
had never heard of independent testing, even from his technical managers,
who should have known better.

At that time, about 80% of the company’s staff was technical (i.e.,
engineering, IT, and tech support). Somewhere over 80% of that technical
staff’s time was spent handling emergency tech support calls, up to and
including the time of the CTO and VP-level managers. Many of these calls
were coming though the CEO’s office. Since the technical staff were already
more expensive per person than average, this meant that well over 2/3 of the
company’s entire salary budget was being spent on customer support!! As a

12

result, this technical staff worked long hours, suffered terribly from burnout,
and the turnover rate was more than 50% per year even though the company
was paying well above market average salaries.

Eventually this situation was turned around. The company still exists and is
profitable and growing. But the transition was painful, involved a lot more
turnover, and a slow process of education of the executive management. It
could just as easily have turned out very badly for everyone involved – and
does for countless such startups every year.

3.5. Incredible, but True

Even as I wrote the preceding section, I found the stories incredible. Had I not
personally witnessed them or heard them from very reliable sources, I might
not believe them. Even with the vast amount of information on how to
prevent such disasters, these stories are the rule rather than the exception –
at least in the commercial world.

Each of the product managers had believed they knew when “enough” defect
correction had been completed. The truth, however, is that they were
shooting from the hip rather than taking the time to look at their situations
objectively. In each case, significant resources were expended after the fact
to correct issues that should have been addressed prior to release.

I really wanted to include a case study that demonstrated an overemphasis on
quality, but I was unable to find a good clear-cut example. Of course, we have
all heard of huge programs (my experience is with DoD) that are eventually
cancelled after years of missed deadlines and/or missed quality goals. But
there seems to be nearly universal agreement in the literature (and I agree, by
the way) that these cases were not so much due to overemphasis on quality as
they were on poor choice of development model, poor execution, poor
definition of the end goal, etc. My few experiences with cancelled products in
the commercial world have been clear failures of marketing, not of
development (i.e., there was never sufficient market for the product in the
first place and this was known only after it was introduced).

Maybe this point is instructive. In his book entitled “Beyond Fear,” [Schneier,
2003] Bruce Schneier reminds us of the disparity between our gut feeling for
the frequency of scary events and their actual odds of occurring. He points
out that 40,000 Americans die in auto accidents every year and that to
produce this many deaths from air travel, the equivalent of one 727 would
have to crash every 36 hours. Yet Americans universally take driving for
granted while most of us are at least somewhat unnerved by air travel and
many refuse to fly for any reason. We should consider the very real possibility
that our fears of losing revenue by delaying the release of a product and of
“wasting” precious resources on improving quality are an example of this
imperfect feel for real world statistics. We have very little visibility into the
actual monetary effects of market timing, but we know that missing it badly

13

would be catastrophic, so our fears may drive us to vastly overestimate its
importance relative to quality. The importance of avoiding this trap (and
many others) is discussed at length in Hammond [2002]. The prescription for
avoiding it is to recognize that you may fall prone to it and to gather as much
objective data as possible.

Given the overwhelming evidence in favor of a small amount of proactive
attention costing considerably less time, money, and resources than was paid
as a consequence of doing nothing, such situations are simply inexcusable.
Yet many organizations repeat mistakes like these on a daily basis.

4. Opportunities for Quality Improvement

In Section 1, we introduced our 3 primary areas of opportunity for quality
improvement: Prevention, Detection, and Correction. Now let’s consider these
3 areas of opportunity separately and look at some factors that affect how
successful we can be at each of them.

4.1. Opportunities to Prevent Defects

Table 1 lists 21 rows of factors that have a direct impact on the
creation/prevention of defects by a development staff. This table also
includes 7 columns that identify key influences on these 21 factors. The
items in these 7 columns may be thought of as “control points” through which
the needed adjustment of the 21 defect prevention factors may be
accomplished. It would be tidy indeed if the 21 factors could be neatly
divided into 7 groups, each identified by one of these key control points, but
the truth is that most of them are affected by several control points and all
but 3 are impacted by more than one.

The key control points are briefly defined as follows:

� Personnel – the engineering staff itself, including its makeup,
training, education, experience, skill, attitude, etc.

� Management – the technical management of the company, including
anyone with management responsibilities, and what this
management team emphasizes, requires, and does.

� Process – Written or unwritten policies and procedures describing
what is to be done and how.

� Culture – The less tangible aspects of the way the members of the
engineering staff treat each other, the way they view and interact
with customers, etc.

� Requirements – The authoritative source of information about what
the product is supposed to do and how it is supposed to do it.

� Tools – Any and all hardware, software, etc. that the engineering
staff can use to improve their ability to complete their assigned
tasks.

14

� Product - the product itself, including its complexity, its
interoperability requirements, its user interface, etc.

Table 1. Factors Affecting Defect Prevention

Defect Creation Factor Pers
onn

el

M
an

ag
em

en
t

Pro
ce

ss

Cultu
re

Req
uire

men
ts

Too
ls
Pro

du
ct

Experience and/or education of developers X

Experience and/or training of developers with tool set,
OS, compiler, or third party software being used. X X
Realism of development schedules X X
Extent of developer unit and integration testing X X X X X
Clarity and realism of requirements X
Stability of requirements X X X
Flexibility of process and schedule to handle the
unanticipated X X
Presence and quality of high-level specifications
and/or designs X X
Development staff acceptance of responsibility for
quality, regardless of presence or competence of
separate testing staff. X X X
Usable and reliable build tools and process X X
Presence and usability of source control tools and
process. X X
Level of resistance of development team to "gold
plating." X X X X
Amount of customer or key stakeholder feedback
during requirements, design, and early prototyping
phases. X X X
Caution exercised in modifying poorly understood or
poorly documented code. X X X
Code base size X
Availability of helpful development tools (CASE tools,
simulators, emulators, debuggers, etc.) X
Management emphasis on quality (with accompanying
rewards). X
Familiarity of UI designers with domain in which
product will be used. X X
Fluency of UI designers in language in which the UI is
being written. X X
Willingness of developers to share information, help
each other, take responsibility, etc. X X
Resiliency of software architecture to evolution and
change. X X

Notice something very interesting from the table. If we count the number of
defect prevention factors over which each control point exerts influence, we
get the relative influences depicted in Figure 8.

15

0

2

4

6

8

10

12

M
an
ag
em
en
t

Pe
rs
on
ne
l

Pr
oc
es
s

Re
qu
ire
m
en
ts

To
ol
s

C
ul
tu
re

Pr
od
uc
t

Figure 8. Relative Spans of Influence Over Defect Prevention

Right away, some very interesting conclusions leap out at us. First, as much
as we might like to lay the blame for defect creation on the complexity or
uniqueness or past mistakes made with the product itself, the truth is that the
product itself plays a very minor role in affecting the number of new defects
that will be created as it is expanded, enhanced, or debugged.

Second, notice that management has the highest potential impact. This is
great news for any manager who identifies with the feeling of despair that we
mentioned in the Introduction. Managers have more influence than any other
factor. And since managers generally have the ability to select their
personnel, Figure 8 vastly understates management influence. The moral of
the story is: if you as a manager want a more profitable quality, the power to
achieve it is in your hands.

Only a little less important than management in effecting the creation of
defects are personnel and processes. It should be obvious that it is critical to
get your people on board with your quality efforts. We’ll discuss how to do
that more in Section 5.

And, alas, process rears its ugly head again. But before we slip back into
despair, let’s step back and take an objective look at what this table is really
telling us. Although there are many opinions in this area, there are some
areas of very strong agreement that have emerged over the years:

1. A good process is easy to understand and as easy as possible to
implement.

16

2. A good process is flexible enough to handle the unexpected and to
allow smart people to use their discretion, but defined enough to
keep such discretion from devolving into laziness.

3. The emphasis on quality is completely integrated into a good
process. It is not a separate consideration.

4. A good process provides abundant feedback to team members, to
management and, as far as is reasonable, to customers.

5. A good process is actually followed – not just put in place as a
smoke screen or a “feel good” measure.

6. There are crystal clear reasons behind each and every aspect of a
good process and all of these reasons are communicated to team
members early and often. Any action prescribed by the process
without a compelling reason behind it should be eliminated.

Beyond these few guidelines, the best process for your organization is the one
that works for your organization. So don’t let yourself be weighed down by
the need for a process. Put something into place that works for you and
change it when the need for change becomes obvious.

4.2. Opportunities to Discover Defects

Table 2 lists some of the factors affecting defect discovery and again
indicates key points of control for each factor. In this case, there are 23
detailed factors.

Again analyzing the levels of influence of the seven primary points of control,
we arrive at the breakdown shown in Figure 9.

Immediately, we notice that management and personnel are even more
important to defect detection while the product itself is less important. Given
the examples of quality failures from Section 3, this should come as no
surprise. It takes a deliberate management decision to put a test team into
place. The manager and members of this team must have a mindset that is
quite unique among software professionals. So it seems clear that if we want
to find our defects before our customers find them, we need people whose
mission is to find defects. Moreover, they must be the right people and
management must support them.

Once a superior test team and its management are in place, then we can move
on to worries about process and culture. Of course, the process guidelines
listed in the preceding section also apply here. But note that team culture is
of much greater importance in defect detection than it was in defect
prevention. Here’s why…

17

Table 2. Factors Affecting Defect Detection

Defect Detection Factor Per
so

nne
l

M
an

ag
em

en
t

Pro
ce

ss

Cultu
re

Req
ui

re
m

ents

Tools
Pro

d uc
t

Independence of test staff X X

Experience of test staff with good testing practices. X X
Experience of test staff with software in the domain of
that under test. X X
Emphasis on functional test coverage. X X X X
Effectiveness of test planning. X X X
Appropriateness of test staff assignments vis a vis staff
strengths. X X X
Availability of helpful test planning and management
tools. X
Availability of helpful defect reporting tools. X
Level of management support to the mission of the
independent test team (with appropriate reward
system). X
Availability of specialized tools for execution of tests
(highly dependent on product under test, but may
include anything from frequency analyzers to
simulators to network traffic generators). X

Experience and training of test staff with various tools. X X X
Understanding by test staff that their job is not to prove
that the software works, but that it doesn't work (i.e., to
break it before the customer does). X X X
Ability and willingness of test staff to test beyond
written requirements. X X
Acceptance by test team of responsibility to fully
assess (but not to assure) the quality of the product. X X
Test team access to complete and stable
requirements. X X X
Test team involvement in requirements analysis and
review. X X X X X
Test team involvement in scheduling. X X X X
Realism of time and resources allocated to testing X X
Repeatability of tests performed. X
Usability of the product under test (the harder it is to
use, the harder it will be to test). X X
Existence of alpha and beta test programs. X X
Culture of teamwork among test engineers. X X X
Culture of teamwork between test and development
staffs. X X X

If a test team is doing its job well, they are producing a lot of what developers
would consider bad news. Nobody likes to have his or her mistakes made
public, but that is exactly the mission of a test team. So to minimize the
potential emotional impact of this situation, it is important that both
developers and testers have a positive, professional, team-oriented, thick-
skinned attitude. Management must not only model this behavior, but must
insist on it in their teams and must nip any adversarial attitudes in the bud.
Also remember that if developers’ mistakes are not found by the test team,
then they will be found and made much more public by our customers!

18

0

2

4

6

8

10

12

14

16

M
an
ag
em
en
t

Pe
rs
on
ne
l

Pr
oc
es
s

Cu
ltu
re

Re
qu
ire
m
en
ts

To
ol
s

Pr
od
uc
t

Figure 9. Relative Spans of Influence Over Defect Detection

4.3. Opportunities to Correct Defects

As with prevention and detection, there are several factors that contribute to
how quickly and inexpensively reported defects can be found and corrected.
Some of the more important ones are listed in Table 3.

There are 12 factors listed in Table 3, with the key control points breaking
down as shown in Figure 10.

Once again, management and personnel far outweigh the other control points
on the list, but culture has moved even higher in the list. For debugging
efforts, the cultural influence is primarily a question of how closely the
development and test teams are willing and allowed to work together. In a
close-knit culture with a high level of cooperation, test engineers can make
significant contributions to the debugging effort. If this teamwork is not
present, debugging efforts are much less efficient.

19

Table 3. Factors Affecting Defect Correction

Defect Correction Factor Per
so

nn
el

M
an

ag
em

ent

Pro
ce

ss

Cultu
r e

Req
uir

em
e

nts

Tools
Pro

duc
t

Debugging skills of development staff X X
Repeatability of reported defects X X
Number of coexistent defects per function point (large
numbers of defects will exhibit correlated symptoms
and make debugging diffucult). X
Availability of adequate debugging tools. X
Readability and maintainability of software base. X X X X X X X
Development staff turnover. X X X
Ability of test engineers to assist in debugging efforts
(if asked). X X X
Availability of large or unique hardware configurations
for reproducing rare defects. X
Management emphasis on elimination of defects as a
measure of product quality accompanied by
appropriate rewards. X X
Cultural recognition of maintenance activities as key
to the success of the product (i.e., if the "good"
developers always get assigned to the new products
or features, then maintenance must not be as
important). X X X
Extent of customer support feedback into development
priorities. X X X
Culture of teamwork between test and development
staffs. X X X

0

1

2

3

4

5

6

7

8

M
an
ag
em
en
t

Pe
rs
on
ne
l

C
ul
tu
re

Pr
oc
es
s

Re
qu
ir
em
en
ts

To
ol
s

Pr
od
uc
t

Figure 10. Relative Spans of Influence Over Defect Correction

20

5. Getting Objective Data

At this point, we have established that:

1. An optimal level of quality investment exists, and we risk losing
significant profit potential if we miss it.

2. Despite abundant proof of the importance of quality, most
development shops seriously neglect some aspect of it.

3. The neglect of quality will negatively impact our products, customers,
businesses, and lives.

4. There are straightforward steps that can be taken to prevent defects,
to ensure the discovery of defects, and to correct defects, each
connected to one or more identifiable areas of responsibility.

Yet the question remains: We know about all of these things, and we are doing
many of them, but how do we know which ones are the most cost effective?
There is no perfect answer to this question, but there are ways to get feedback
that will move a project in the right direction.

5.1. Feedback on Defect Prevention

The primary metric for measuring the effectiveness of prevention efforts is
defects per unit of software functionality (defects in this case being limited to
those reported after a build has gone to system test).

Much has been written over the years concerning how to fairly and accurately
measure software functionality. Function point analysis seems to have the
most venerable pedigree and the most flexibility [Garmus & Herron, 2000].
The problem with function point analysis is that significant training, expertise,
and experience is required before a software professional can really do it
accurately. That may be the case, but in some cases where software products
have very large distributions, it is probably well worth the investment,
especially given the potential variety of uses to which the technique may be
put. Even if we cannot afford the investment in rigorous function point
analysis, we can probably get closer than a wild guess by calibrating simpler
counting techniques to spot function point analyses.

The defect-per-functionality metric should be done on a per “module” basis (a
“module” being a block of code encompassing a single relatively small and
independent set of features) and on a per developer basis. If we measure this
on a per developer basis, then we really should also measure developer
productivity as well (units of functionality added per month or similar
measure). If we don’t, our metric will improve our defect rate, but will also
slow production.

A lot of very experienced people in the software development and quality
fields argue against using metrics that gauge individual performance. These

21

experts’ experiences are perfectly believable but their prescriptions are dead
wrong. First, to say that a software team should not use a metric because its
members will find ways to cheat and distort it seems to be tantamount to
making excuses for lying, cheating, irresponsibility, and immaturity. These
issues should be addressed separately. Honesty and integrity are
requirements of any profession and software engineering should not be
excepted. Management should expect and accept no less, regardless of the
process chosen. Secondly, arguing against using these metrics because they
are dangerous seems very similar to saying “you can cut yourself with a knife,
so never use knives.”

Michael LeBoeuf, in his classic book “How to Win Customers and Keep Them
for Life,” [LeBoeuf, 1987] points out that there are 3 ways for employers to get
what they want from their employees:

� Tell them what you want
� Show them what you want
� Measure and reward what you want

It is plain at a glance that these are listed in order of increasing effectiveness.
If we tell our developers that we want productivity and quality and then
demonstrate to them that we have absolutely no intention of objectively
measuring either, they’ll get the real message loud and clear: quality and
productivity are not really important. Moreover, we will have demonstrated
our duplicity, which our team members can smell from miles away. Michael
LeBoeuf goes on to say, “if someone tells you that what he does can’t be
measured, you can safely bet that he isn’t doing much.”

That being said, we should keep in mind the cautions that have been
broadcast by others concerning using metrics, especially when they are tied to
personnel. That which we measure and reward, we are guaranteed to get
more of and that which we measure and punish, we are guaranteed to get less
of. So before we start using metrics like these, we need to think carefully
about what warped incentives we might be inadvertently injecting. Only if we
are convinced that they are minimal and/or manageable should we implement
the metrics.

Just by making these two measurements, we should see an improvement in
our quality and our productivity because of the psychological impact. But we
also can use the data in a couple of important ways.

The defect-per-unit-functionality metric is a great first-order way to discern
how each of our developers is performing where quality is concerned. We
should avoid any direct numerical tie to raises or bonuses, but we should take
this data into account and our developers should know that we consider it.
We may discover that a developer is a terrific debugger but is a relatively poor
unit tester or that another is great at UI design but poor at data structures.

22

Such serendipitous results are very extremely valuable. We can only improve
when we are aware of the need for improvement!

The second and much more important way to use these metrics is to use the
per module defect data to identify modules that are good targets for
refactoring or rewriting. If one module or feature represents 8% of the code
and accounts for 28% of the defects, then we are well advised to review the
design of that module.

5.2. Defect Detection Metrics

5.2.1. Defect Arrival Rate
Basic defect arrival rate data can be pulled directly from any good defect
tracking tool. Development and test managers should at least look at this
metric for potentially useful information. In some cases, the “noise” may
overwhelm any trend present in the defect arrival rate and the metric may
be useless - but it never hurts to look.

5.2.1.1. The Theory Behind Defect Arrival Rate Analysis

Defect arrival rate (AKA latent defect) analysis is simply an attempt to
estimate the number of remaining defects in a product based on the
rate at which defects have been detected during system testing. This
technique takes advantage of the diminishing rate of returns for testing
that we saw in Figure 1.

To perform a defect arrival rate analysis, we begin by graphing the
defects found per unit time vs. time as illustrated in Figure 11.3 The
discrete points in Figure 11 clearly indicate a trend that looks a lot like
the trend in Figure 1. The analysis involves first spotting such a trend
and then fitting a curve (such as a Weibell, Rayleigh, or decaying
exponential) to the data using a method such as a minimum variance
least squares curve fit.

If a trend is apparent in the data, the question of what curve to use to
fit the data is academic and pointless. As discussed in Hoffman [2000]
the data under analysis are not going to adhere to the assumptions that
the pure math demands for any curve.

3 The data in Figure 11 are for an unusually long project and are much better behaved than in
most real-world projects.

23

0

5

10

15

20

25

30

35

40

45

50

0 28 56 84 112 140 168 196 224

Days Since Testing Began

D
ef

ec
ts

 F
ou

nd

Figure 11. Example of Defect Arrival Rate Data

But this does not matter nearly as much as the fact that the math will
allow you to find a way to use the data to estimate the remaining
defects at any point in time.4 So we can fit the data with any function
f(t) that

� Fits the data well.
� Decays asymptotically to zero as test time approaches

infinity.

� For which ∫
∞

T

dttf)(is a finite, positive number.

In fact, there is no harm in trying several curves before choosing one.

Once a function is chosen and is fit to the existing defect arrival rate
data, an estimate of the remaining defects is obtained by integrating
the curve from the last data point to infinity as illustrated in Figure 12.

4 Just bear in mind that the actual uncertainties are a little higher than the mathematical results
will suggest because your model is not perfect.

24

Time

D
e
fe
c
ts
 F
o
u
n
d
 P
e
r
U
n
it
 T
im
e

Decision
Point

Known Previous
Arrival Rate

Estimated Future
Arrivals

Hashed area under curve
integrated to infinity
is estimated number
of remaining defects.

Time

D
e
fe
c
ts
 F
o
u
n
d
 P
e
r
U
n
it
 T
im
e

Decision
Point

Known Previous
Arrival Rate

Estimated Future
Arrivals

Hashed area under curve
integrated to infinity
is estimated number
of remaining defects.

Figure 12. Defect Arrival Rate Analysis

5.2.1.2. A Short Test Project Example

Let's look at the application of this analysis technique to a very short
(totally fictitious) test effort. Let's say that, so far, our test team has
been testing for one full week. In one week of testing, the test team
has found 39 defects. The defects have arrived as follows:

 Day of Week Day No. No. Defects

 Monday 1 11

 Tuesday 2 10

 Wednesday 3 7

 Thursday 4 7

 Friday 5 4

This data is graphed in Figure 13.

25

0

2

4

6

8

10

12

1 2 3 4 5

Day of Testing

N
um

be
r

of
 D

ef
ec

ts
 F

ou
nd

 E
ac

h
D

ay

Figure 13. Defects Found Per Day

As presented in Figure 13 (the most common way of viewing defect
arrival rate) the data look pretty scarce. But there is a definite trend
toward fewer defects being found each day. We can try fitting a
decaying exponential curve to the data of the form

 btaeD −=& (1)

where

t is time in days,

a and b are arbitrary positive constants to be determined by the
curve fit,

and where

dt

dD
D =& (2)

is the defect arrival rate where D is the sequential defect number at any
time t. Figure 14 shows the data from Figure 13 with the curve fit and
the resulting equation added. The curve fit estimates the constants a
and b as follows:

024.15≅a

238.0≅b

26

Figure 14. Small Project Defect Arrival Rate

To estimate the number of remaining defects using this equation, we
integrate it from 5 days to infinity. We'll skip the math here for the sake
of brevity, but the estimated number of undiscovered defects is 19.
This is actually not a bad estimate (we generated the data and therefore
know that there are actually 21 defects remaining at this point).

There is one situation to which this technique cannot be applied: If
there is ever a unit of time in which no defects are found, then the curve
fit attempt will fail completely and no solution will be possible.5 For
such a case, we'll need another approach.

5.2.1.3. Viewing the Same Data Differently

Another way to look at the same data is as test time between defect
reports. This alternate view is particularly useful for very short test
cycles or low defect counts (as in this example) or where there are
periods of time where no defects are found. Figure 15 illustrates our
short test project data as time between defect reports.

At first glance, this view of the data does not look very helpful. There
are a lot more data points, but there is also a lot more noise in the data.
But before we give up, let's look at how we might find a useful solution.

5 The reason for this is that the solution for the curve fit is actually performed in natural
logarithm space and the natural logarithm of 0 is undefined (negative infinity).

0

2

4

6

8

10

12

14

1 2 3 4 5

Day of Week

N
um

be
r

of
 D

ef
ec

ts
 F

ou
nd

 E
ac

h
D

ay

teD 238.0024.15 −=&

27

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 5 10 15 20 25 30 35 40

Sequential Defect Number

T
es

tin
g

D
ay

s
B

et
w

ee
n

D
ef

ec
t R

ep
or

ts

Figure 15. Days Between Defect Reports

We can start with equation (1) (estimated defect arrival rate) and can
solve for the corresponding time between defects. If the defect arrival
rate is given by equation (1), then the time between defects must be

bDa

Dt
−

=∆ 1
)((3)

where a and b are the same constants as in equation (1) and where D
can be thought of as the sequential defect number (the derivation of
equation (3) from equation (1) is left to the reader).

We can now estimate a and b again by fitting a curve of the form given

in equation (3) to the data in Figure 15. Doing so gives us

21.14≅a

231.0≅b

Note the similarity between this estimate of a and b and the previous

estimate. Figure 16 shows the curve fit and the resulting equation.

Since this a and b are the same constants as in equation (1), we can
plug them directly back into equation (1) to get our alternate estimate
of the defect arrival rate:

 teD 231.021.14 −=& (4)

28

Figure 16. Days Between Defect Reports with Curve Fit

5.2.1.4. Making Decisions Using Defect Arrival Analysis

Of course, the point is not that one of these visualization techniques is
inherently better than the other. Rather, the point is that where one is
unhelpful, the other is an available option.

How can this analysis help us? We already know that we have found 39
defects in one week of testing. Integrating equation (4) from 5 days to
infinity tells us that there are about 21 defects remaining (recall that we
estimated 19 remaining defects using the decaying exponential fit). In
other words, about 1/3 of all of the defects entering system test still
remain undiscovered. Our analysis tells us that it will take a ridiculous
amount of time to find all of the remaining defects (plug D=60 into
equation 3 with our estimates of a and b to see how ridiculous). That
information is not very helpful. But how many bugs could we find if we
spend another week testing? To estimate this, we integrate equation (4)
from 5 to 10 days.

Doing so tells us that we should discover an additional 13 defects in
another week of testing, leaving only 7. This being the case, we will
certainly keep testing. Then we can always wait until the end of the
second week to decide whether to continue testing beyond that time.
But what might we accomplish by adding test resources to the effort?
We can estimate the effect of doubling our test resources by integrating

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 5 10 15 20 25 30 35 40

Sequential Defect Number

T
es

tin
g

D
ay

s
B

et
w

ee
n

D
ef

ec
t R

ep
or

ts

D
Dt

231.021.14

1
)(

−
=∆

29

from 5 to 15 days rather than from 5 to 10 days.6 We estimate that
doing so should result in the discovery of 17 more defects in the next
week, leaving only 3.

There is one final caveat concerning defect arrival rate analysis. The
primary problem with the defect arrival rate metric is the variation in
the amount of actual testing per unit calendar time. If we simply use
calendar time for our analysis while our test staff was diverted to
training or support for two days – or if someone was out sick for half a
day – then the arrival rate data can be muddied to the point of
uselessness. Some defect arrival rates look like textbook examples of
familiar curves when no attempt is made to calibrate for actual test
time. Others are quite literally useless unless such a correction is
made. Still others are simply useless for a host of other unavoidable
reasons.

But if we can get our test staff to record when they actually start and
stop testing, then we can reduce the noise in the data. This
significantly improves the odds of getting useful information from this
metric. This will have the bonus side effect of making our test
engineers aware of how much time they are spending on activities other
than testing and should increase our test productivity.7

5.2.2. Test Team Performance
The suggested metric for gauging test team performance is the percentage
of defects found after product release. This metric should be assembled
by module or feature, and should ultimately be correlated to test engineer
areas of responsibility. Remember, the point of testing is not to confirm
that a product is great (although testing might do that), but to find defects
before the customer finds them. If this metric is used, it must somehow be
calibrated against the software functionality covered by each tester and
against the absolute difficulty of performing tests in each of the various
software areas.

The same arguments and cautions that were covered in Section 5.1 (i.e.,
concerning metrics gauging individual performance) apply equally well
here. If we doubt our ability to account for coverage and difficulty among
our individual testers, consider this: the alternative is to ignore data that is
readily available and guess at all aspects of a tester’s performance. Most
competent engineers prefer that their supervisors gather any and all
objective data that is available.

6 I.e., adding two weeks assuming constant resources is equivalent to adding one week of
doubled resources.

7 As a test engineer, I will say without hesitation that I am happy to take this extra step in order
to improve the usefulness of the defect arrival rate data.

30

5.3. Defect Correction Metrics

Of all of the ways to spend time and money on quality, correction of known
defects is undoubtedly the simplest way to get a quick return on investment.
Does this mean that we should correct every known defect regardless of its
severity before we can release? Not necessarily, just as we would not continue
to test until the software is “perfect.”8 But it is obvious that fixing a known
defect is almost always less costly than finding and then fixing an unknown
defect.

A quick review of Sections 2.4 and 2.6 suggests that the best source of
information concerning the cost of released software defects is our support
organizations. Beyond that, customers, competitors, and industry peers
provide valuable feedback, even if it can sting sometimes. Without even
attempting to develop a mathematical or statistical solution to this problem,
we can ask ourselves several questions:

� What percentage of call center’s time is spent on calls about actual
defects in software (versus customer questions, confusion, etc.)?

� What percentage of field engineer time is spent on explaining or
working around actual defects in the software (versus nominal
installation assistance, etc.)?

� Is there a subset of defects that seem to generate an inordinate
number of calls or a high level of surprise, anger or frustration
among customers?

� Have customers postponed initial or follow-on purchases or
threatened to do so until some bugs are fixed? Do we typically have
such a “punch list” with new customers?

� If our product was reviewed by an industry publication, how was it
rated for reliability?

� How do our technical and field support teams rate the reliability of
our product?

� Do we include a list of known problems with every release of our
product? If so, do they describe serious problems or require
acrobatic workarounds or are they minor irritants that are easily
ignored?

� Does our test and/or development staff often get called upon to help
solve support issues?

� Have our customers begun to skip the call center and call the
engineering staff – or worse yet, the CEO – about their problems?

8 By the way, finding the 59th defect in our previous example is estimated to take an additional
36 test-hours after the 58th defect is found. Finding the 60th defect would take an infinite
amount of testing according to our estimate. These numbers are only estimates for a
fabricated example, but the law of diminishing returns for testing is very real.

31

� Are we having any difficulty getting insurance in field with high
liability risks? What about certifications? Agency approval?

� When we demonstrate our product, are there some features we
intentionally avoid because of their usability or reliability?

There are more such probing questions that could be asked, but this list
should clearly illustrate the point. If we aren’t asking these questions at all,
then we are almost certainly underspending on quality. If we answer them
objectively, then the answers will tell us if we have a quality issue.

Once we have the answers to these questions, the next place to look is in our
defect tracking database. Did we release with several known defects? Were
any of them marked with a severity level greater than minor? If so, we’ll
probably see the effects in the answers to the questions above. Even if we
released with only minor defects, we may see them showing up in our tech
support costs (see Section 3.3 above). In that case, we will probably save
money by fixing them.

Another bit of data that we can collect and analyze in this area concerns
implicit feature requests and documentation defects. Once we have analyzed
our tech support expenditures on defects, let’s go back and review them
again. Are there certain features or procedures that frequently seem to
confuse customers? Are there feature requests that have come up repeatedly?
Even if such requests are not identical, there may be groups of them that
point to a deficiency in some area of the software, help system, and/or
documentation. Any such areas that are identified should be slated for
enhancement as soon as possible. Doing so will improve our customers’
experience and again reduce our support costs.

One final note on defect correction… Remember that a defect can have
effects beyond those that are immediately obvious. Moreover, defects can
mask or exacerbate each other. The more defects there are in a product, the
greater this negative interaction between defects. Allowing defects to
accumulate in a product over multiple releases (which is what will happen if
the decision is made in each release not to fix all of defects that were found)
will eventually result in an unmanageable defect database and product of
diminishing quality.

6. Conclusions and Recommendations

So how do we analyze the metrics and use them to effectively accomplish the
simultaneous optimization of defect prevention, defect detection, and defect
correction? The bottom line is our comfort level with the answers to the
questions in Section 5.3. If we at least make the effort to examine our support
efforts and our testing efforts, we are more likely to move toward the optimal
point. If we are happy with our answers to all of the questions in Section 5.3

32

and we spend a good deal of money on defect reduction efforts, then we may
be overspending on quality.9

6.1. Concerning Test Automation

One final recommendation concerning defect prevention deals not so much
with metrics, but with the means of preventing defects. I have never actually
witnessed a development shop that clearly and adequately defined “unit test.”
It would seem that this should be taught in software engineering programs,
and maybe it is, but we will probably dramatically improve our defect
prevention performance by simply offering our staff a clear definition of a unit
test. Consider the following proposed definition:

A software unit test is a white-box test written and executed by a
developer against his/her own code with the intent of exercising it as
completely as possible and in small units. The unit test should focus on
exercising the software as software, not necessarily as an integrated
product.

The reason for this definition is very simple. Very little value is added if
developers simply try to predict what system testers will do and beat them to
the punch. Doing so will not be terribly effective (it takes an entirely different
temperament to be a good tester than to be a good developer). But even if it
is perfectly effective, it is nearly a total duplication of effort! It is hard to
imagine anything less optimal.

Most system tests do not lend themselves readily to automation [Kaner, et. al,
2002]. On the other hand, almost all unit testing can and should be
automated. Barry Mullan, at the Year 2000 Pacific Northwest Software Quality
Conference, presented a paper called “The Future of Developer Testing for
Java” [Mullan, 2000]. In this paper (most of which easily generalizes beyond
Java) he demonstrated that the largest gains to be realized from test
automation are in unit testing. He is not the only person preaching this
message.

Furthermore, rigorous unit testing is much more likely to uncover those really
nightmarish bugs like errant pointers, memory time bombs, memory leaks,
etc. that are often difficult if not impossible to reproduce in a fully integrated
system.

6.2. Prioritizing Quality Improvement Efforts

Is there an order of importance to the above recommendations for eliminating
defects? To some extent, there is. To get at the answer to this question, let’s
recall a few points:

9 If you are in this position, give me a call. I'd love to meet you and talk about how you got to
this point.

33

� According to TARP [Goodman, 1999] it costs anywhere between 2
and 20 times as much to gain a new customer as to retain an
existing customer. So we are well advised to make our existing
customers happy before worrying about new ones.

� It is a lot cheaper to fix a known defect than to find and fix an
unknown one.

� We can’t fix defects that we don’t know about.
� People are a lot more important than processes or tools (refer back

to Section 4).
� Automation efforts are best directed at white box unit testing.
� Duplication of testing effort between system test and development

test is a waste of resources.
� Having and using objective data is better than not having or not

using objective data.

The relative importance of our recommendations now becomes apparent.
Here is the suggested order of priority:

1. Hire/promote managers and development and testing staff carefully.
If the goal is quality, then the development staff must be on board.

2. Gather objective data. We can’t address problems that we don’t know
about.

3. Measure and reward quality results (not just "efforts").

4. With very few exceptions, fix all known defects.

5. Prevent defects whenever possible during development (No. 3 above
and a good definition of a unit test is a great start).

6. Find the defects that can't be prevented and fix them when they are
found.

7. Assess product quality before release by testing deliberately and using
latent defect estimates.

8. If test automation is used, then focus on automating unit tests before
system tests.

Note that none of the above recommendations include recommendations
concerning process. If, after implementing some or all of these
recommendations, we want to standardize on them, we can certainly do so.
But the point of this paper is that anyone can make great strides toward better
quality and higher profits without implementing someone else’s onerous
process.

Of course, there is one tacit assumption that pervades the entire discussion
and that is that the data discussed throughout this paper is actually being

34

collected. If it is not being collected, then, of course, doing so is the obvious
place to start.

35

Appendix A – Impact of Delay on Revenue Potential

Any new product has revenue potential that at first grows as the market
approaches its “sweet spot” in demand for the product. At times prior to this
sweet spot, the market demand has simply not fully crystallized.

For example, although there is a sizeable market for 200+ GB hard drives
today, the market for such drives 20 years ago would have been a tiny fraction
of today’s market because if there was enough digitized data in the world to fill
one of these drives in 1985, there certainly was not in the average household!

Then, as time marches on, competitors will enter the field and will begin to
compete for a limited number of customers. They will find ways of producing
better competing products and selling them at reduced prices. If our product is
not likewise improved, it will see rapidly diminishing marketability. This market
potential versus time is illustrated in Figure A1.

P
o
te
n
ti
a
l
R
e
v
e
n
u
e
 p
e
r
P
e
ri
o
d

Time

Market need not

crystalized

Competition entering field,

lowering prices, etc.

Figure A1. Potential Revenue vs. Time for a Stagnant

Product at a Given Quality Level

But when deciding when to release a product, we are not as interested in a
quarter-by quarter look at revenue potential as we are in the lost opportunity
costs due to delaying the release. A more useful way to present this
relationship is as potential total revenue for a product given a specific release

36

date. Such a curve would be obtained by starting at each point on the graph in
Figure A1 and integrating to infinity. Figure A2 illustrates this result for
several quality levels.

Figure A2 illustrates that the potential total revenue for a product is highest
when the product is released as early as possible and that this potential begins
to decay at an increasing rate at some point – consistent with increased
competitive pressures. It also shows that the potential total revenue increases
with the quality of a product, but that even for high quality products, potential
revenue falls to an unprofitable level eventually. Figure A2 expresses yet
another thing that we all know instinctively: quality is great, but not if it causes
us to miss the window of opportunity when the market presents it.

Release Date

P
o
te
n
ti
a
l
T
o
ta
l
R
e
v
e
n
u
e

Low Quality

High Quality

No Business Case

Good Business Case

Great Business Case

Release Date

P
o
te
n
ti
a
l
T
o
ta
l
R
e
v
e
n
u
e

Low Quality

High Quality

No Business Case

Good Business Case

Great Business Case

Figure A2. Potential Total Revenue vs.
Release Date for Several Quality Levels

So to recap the costs of high quality, Figure 5 illustrates that beyond a certain
point, incremental increases in quality get very expensive. And Figure A2
warns us against letting our testing and debugging take too long.

37

References

Garmus & Herron, “ Function Point Analysis: Measurement Practices for
Successful Software Projects,” Addison-Wesley Information Technology
Series, December 15, 2000.

Goodman, John, “Basic Facts on Customer Complaint Behavior and the Impact of
Service on the Bottom Line,” Technical Assistance Research Programs
(TARP), June 1999.

Hammond, John S., “Smart Choices: A Practical Guide to Making Better
Decisions,” Broadway, March 5, 2002.

Hoffman, Douglas, “The Darker Side of Metrics,” Pacific Northwest Software
Quality Conference, 2000.

Kan, Stephen H., "Metrics and Models in Software Quality Engineering," Addison
Wesley, 2003.

Kaner, Bach, and Pettichord, “Lessons Learned in Software Testing,” John Wiley
& Sons, 2002.

LeBoeuf, Michael, “How to Win Customers and Keep Them for Life,” Berkley,
1987.

Mullan, Barry, “The Future of Developer Testing for Java,” Pacific Northwest
Software Quality Conference, 2000.

Schneier, Bruce, “Beyond Fear,” Springer, July 28, 2003.

